Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИОЛОГИЯ И ПАТОЛОГИЯ СИСТЕМЫ КРОВИ.doc
Скачиваний:
941
Добавлен:
14.05.2015
Размер:
1.49 Mб
Скачать

3.16. Ренин-ангиотензин-альдостероновая система

Доподлинно известно, что ренин-ангиотензин-альдостероновая система играет чрезвычайно важную роль в регуляции кровяного давления и электролитного обмена у человека и высших животных. Вместе с тем, за последние годы выявлены новые функции ренин-ангиотензин-альдостероновой системы, что вновь привлекло внимание исследователей к изучению её физиологической роли в организме. В состав этой регуляторной системы входят ренин, ангиотензиноген и его производные формы –ангиотензин I и ангиотензин II, а также гормон корковой зоны надпочечников – минералокортикоид альдостерон.

Ренин – фермент, синтезируемый юкстагломерулярными клетками почечных афферентных артериол, имеющий ММ около 40 кДа. Особенно интенсивно образование ренина происходит при ишемии почек. Локализация юкстагломерулярных клеток делает их особенно чувствительными к изменениям кровяного давления, а также концентрации ионов Na+ и К+в жидкости, протекающей через почечные канальцы. Благодаря указанным свойствам любая комбинация факторов, вызывающая снижение объема жидкости (обезвоживание, падение кровяного давления, кровопотеря и др.) или снижение концентрацииNaCl, стимулирует высвобождение ренина.

В то же время большинство регуляторов синтеза ренина действуют через почечные барорецепторы. На освобождение ренина оказывает влияние состояние ЦНС, а также изменение положения тела в пространстве. В частности, при переходе из положения лёжа в положение сидя или стоя (клиностатическая проба) секреция ренина увеличивается. Эта рефлекторная реакция обусловлена повышением тонуса симпатической части автономной нервной системы, передающей импульсы к-адренорецепторам юкстагломерулярных клеток.

Основным субстратом, на который воздействует ренин, является ангиотензиноген– белок, входящий во фракцию2-глобулинов и образуемый печенью. Под воздействием глюкокортикоидов и эстрогенов синтез ангиотензиногена значительно возрастает. В результете действия ренина ангиотензиноген превращается в декапептидангиотензин I.Это соединение обладает чрезвычайно слабым действием и существенного влияния на уровень кровяного давления не оказывает.

Между тем ангиотензин I под воздействием так называемогоангиотензинпревращающего фермента (АПФ)переходит в мощный сосудосуживающий фактор – ангиотензин II. АПФ(дипептидкарбооксипептидаза) является интегральным белком, расположенным преимущественно на мембране эндотелиальных клеток, эпителии, мононуклеарах, нервных окончаниях, клетках репродуктивных органов и др. Растворимая форма АПФ присутствует практически во всех жидкостях организма.

Принято выделять две изоформы АПФ. Первая из них получила условное наименование «соматической». Эта изоформа имеет ММ 170 кДа и включает гомологичные С- иN-домены. Вторая форма АПФ («репродуктивная») найдена в семенной жидкости, имеет ММ около 100 кДа и соответствует С-домену первой изоформы АПФ. Каждый из 2 указанных доменов содержит аминокислотные остатки, которые могут принимать участие в образовании связи с атомом цинка. ТакиеZn2+-структуры являются типичными для многих металлопротеиназ и оказываются основными участками взаимодействия фермента как с субстратом, так и с ингибиторами АПФ.

Следует заметить, что АПФ не только приводит к образованию ангиотензинаII,но и разрушаетбрадикинин – соединение, расширяющее кровеносные сосуды. Следовательно, увеличение кровяного давления при воздействии АПФ связано как с образованием ангиотензинаII, так и с распадом брадикинина (рис. 32).

Важную роль для действия АПФ играет ионный состав и, в частности, содержание ионов хлора. Так, при высокой концентрации ClС-домен АПФ гидролизует и брадикинин, и ангиотензин-Iбыстрее, чемN-домен. Во внеклеточных регионах, где концентрация анионов хлора высока, за превращение ангиотензина-Iотвечает преимущественноN-домен. Однако внутриклеточно, где концентрацияClнизкая,N-домен может участвовать в гидролизе других пептидных субстанций.

За последние годы установлено, что АПФ играет важную роль в гемопоэзе, ибо под его воздействием ингибируется образование гематопоэтического пептида, тормозящего образование гематопоэтических клеток костного мозга.

Роль АПФ в организме была выявлена на мышах, лишенных гена АПФ. У таких животных отмечалось низкое кровяное давление, различные сосудистые дисфункции, нарушение структуры и функции почек и бесплодие у самцов.

Ангиотензин II увеличивает кровяное давление, вызывая сужение артериол, и является самым сильнодействующим из известных вазоактивных агентов. Кроме того, он по механизму обратной связи тормозит образование и высвобождение ренина юкстагломерулярными клетками почки, что в конечном итоге должно восстанавливать нормальный уровень кровяного давления. Под воздействиемангиотензина IIрезко возрастает продукция основного минералокортикоида –альдостерона.Несмотря на то, что это действие является прямым, ангиотензинIIне влияет на продукцию кортизола. Основное назначение альдостерона сводится к задержкеNa+ (за счет усиления его реабсорбции в почечных канальцах)и выделению К+и Н+(главным образом через почки). Эти реакции осуществляются следующим образом.

Альдостеронпроникает из внеклеточной жидкости в цитоплазму клетки и там соединяется со специфическим рецептором, после чего образовавшийся комплекс (альдостерон+рецептор) проникает в ядро. Альдостерон также стимулирует открытиеNa+ каналов, благодаря чему ионы Na+ входят в клетку через апикальную мембрану из просвета канальца.

Увеличение секреции К+ под воздействием альдостерона обусловлено возрастанием проницаемости апикальной мембраны по отношению к этим ионам, благодаря чему К+ поступает из клетки в просвет канальца.

Задержка Na+ в организме, как и ангиотензинII, способствует повышению кровяного давления.

Ангиотензин II способен связываться со специфическими рецепторами клубочковых клеток надпочечника. Содержание этих рецепторов во многом зависит от концентрации ионов К+. Так, если уровень К+повышается, то возрастает число рецепторов к ангиотензинуII в клубочковых клетках. При уменьшении концентрации ионов К+отмечается прямо противоположный эффект. Следовательно, ионы К+играют основную роль в действии ангиотензинаIIна надпочечники.

За последнее время установлено, что ангиотензин IIспособен активировать макрофаги, благодаря чему усиливается агрегация тромбоцитов и ускоряется свёртывание крови. Одновременно при этом высвобождаетсяингибитор активатораплазминогена-I(ИАП-1),что может сопровождаться депрессией фибринолиза. Ангиотензин II является одним из факторов, способствующих развитию атерогенеза, торможению апоптоза и усилению оксидативного стресса в тканях, тем самым провоцируя агрегацию тромбоцитов и тромбообразование.

Ангиотензин II способен усиливать функцию миокарда, участвует в биосинтезе норадреналина и других физиологически активных веществ. Одновременно он может действовать как ростовой фактор, приводя к сосудистой и сердечной гипертрофии.

У некоторых животных и у человека ангиотензин IIпод воздействием ферментааминопептидазыпревращается в гептапептидангиотензин III. У человека уровень ангиотензинаII приблизительно в 4 раза выше, чем ангиотензина III. Оба эти соединения оказывают влияние на уровень кровяного давления и продукцию альдостерона и довольно быстро разрушаются под воздействием ферментов ангиотензиназ.

При тяжелых заболеваниях почек, сопровождающихся их ишемией, благодаря повышенному образованию и секреции ренина наблюдается стойкое повышение кровяного давления (почечная гипертензия). Применение ингибиторов АПФ в этих условиях приводит к быстрой нормализации кровяного давления.

В заключение следует еще раз подчеркнуть, что ангиотензин-ренино-альдостероновая система теснейшим образом связана с функцией калликреин-кининовой системы, ибо образование ангиотензина II и разрушение брадикинина осуществляется под воздействием одного и того же фермента – АПФ.