Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Функциональные уравнения.doc
Скачиваний:
169
Добавлен:
15.05.2015
Размер:
904.7 Кб
Скачать

П.1.1.4. Класс дифференцируемых функций.

Легко проверить, что если функция f (х) дифференцируема в точке х0, то она непрерывна в этой точке, Как показывает пример функции f(x)=|x|, обратное утверждение, вообще говоря, неверно. Поэтому класс дифференцируемых функций уже класса непрерывных функций. Следовательно, решением уравнения Коши в классе дифференцируемых функций является линейная однородная функция. Тем не менее, метод решения уравнения Коши в предположении дифференцируемости f(x) представляет интерес ввиду его простоты. При фиксированном у R f (х + у) и f(х) + f (у) являются функциями переменной х R. Ввиду их равенства, равны и их производные (по переменной x!). Продифференцировав обе части равенства (4), получим

(1.9)

(, как производная постоянной). Равенство (1.9) выполняется для любыхх R, у R, так как у можно было выбрать произвольно, Положив в(1.9) х = 0, придем к тождеству

для всех у R. Итак, — постоянная функция. Поэто­му ее первообразная

f (х) = сх + b (1.10)

где b — некоторое действительное число. Проверка показы­вает, что (1.10) удовлетворяет (4) только при b = 0, с R.

Существуют и другие классы функций, в которых аддитивная функция неминуемо будет являться линейной однородной, однако найден пример аддитивной функции и в классе разрывных функций. Этот пример построил Гамель. Построенная функция обладает следующим свойством: на любом (произвольно выбранном) интервале (a, b), пусть даже сколь угодно малом, функция f(x) не ограничена, т. е. среди значений, которые данная функция принимает на этом интервале, имеется и такое, которое больше любого наперёд заданного положительного числа. Для построения такой функции Гамель ввёл множество G действительных чисел, называемое теперь базисом Гамеля, которое обладает свойством, что любое действительное число x представимо и при том единственным способом в виде

,

Произвольно задав значения f(x) в точках множества G, можно однозначно продолжить её на всю числовую прямую при помощи равенства

вытекающего из свойства аддитивной функции. Такими функциями исчерпываются все решения (4).

П.1.2. Функциональное уравнение показательной функции

Покажем, что все непрерывные на всей действительной прямой функции, удовлетворяющие функциональному уравнению

f(x+y) = f(x) ·f(y), (5)

задаются формулой

f(x) = ax (a>0)

(если не считать функции, тождественно равной 0).

Итак, пусть f(x) - непрерывная и определённая при всех действительных x функция, удовлетворяющая (5). Исключим тривиальное решение f(x) 0. Тогда для некоторого значения x = x0 эта функция отлична от нуля. Положим в (5) y = x0 - x:

f(x) ·f(x0-x) = f(x0) 0;

отсюда ясно, что f(x) не равна нулю ни при каком x. Заменяя x и y в (5) на x/2, получим

так что f(x) строго больше 0 для всех x. Тогда равенство (5) можно прологарифмировать, например, по основанию e:

lnf(x+y) = lnf(x) + lnf(y).

Положив в этом соотношении φ(x = lnf(x)), придём к функциональному уравнению Коши (4):

φ(x+y) = φ(x) + φ(y).

Учитывая, что φ - непрерывная функция (как суперпозиция непрерывных функций), имеем по доказанному:

φ(x) = lnf(x) = cx (c = const),

откуда находим, что

f(x) = eix = ax (если положить a = ec).

Таким образом, единственной непрерывной функцией, удовлетворяющей уравнению Коши (5), является показательная функция (или тождественно нулевая функция).

В качестве класса функций, в котором искалось решение (2), мы рассмотрели лишь класс непрерывных функций. Как и в предыдущем пункте, можно было бы разобрать решения для монотонных и ограниченных функций, но этого мы делать не будем, потому что (5), как было подмечено, сводится к (4), а для него всё ясно.