Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Функциональные уравнения.doc
Скачиваний:
169
Добавлен:
15.05.2015
Размер:
904.7 Кб
Скачать

§ 6. Применение элементов математического анализа к решению функциональных уравнений п. 6.1. Предельный переход

Идею предельного перехода проиллюстрируем на следующих примерах.

Пример 17. Решить в классе непрерывных функций уравнение

(6.1)

где х R.

Решение. Заменив х на , получим

(6.2)

Используя ту же замену, из уравнения (6.2) последовательно получим

,

,

……………………………………..

Методом математической индукции можно доказать, что

(6.3)

Сложив все уравнения, начиная с (6.2), получим

(6.4)

Так как функция f(х) непрерывна, то при любом фиксированном х

Здесь . Из (6.1) . Тогда

Левая часть равенства (6.4) не зависит от n, поэтому существует ее предел при n → ∞. Переходя к пределу в равенстве (6.4), при n → ∞ имеем

(6.5)

Правая часть (6.5) является суммой трех бесконечно убывающих прогрессий

Итак, , что и подтверждается проверкой.

Пример 18. Функция f: RR непрерывна в точке 0 и для любого x R выполнено равенство

2f(2x) = f(x)+x.

Найти все такие f.

Решение. Пусть функция f удовлетворяет условию. Тогда

Тривиальная проверка показывает, что функция x/3 действительно является искомой.

Пример 19. Доказать, что уравнение

, (6.6)

не имеет непрерывных решений.

Решение. Допустим, что существует непрерывное решение функционального уравнения (6.6). Подставим в исходное уравнения вместо x выражение

ведь если x ≥ 0, то и

получим:

(6.7)

Теперь сделаем такую же замену

в соотношении (6.7):

(6.8)

Описанную операцию проделаем ещё несколько pаз. На n-ом шаге имеем:

Сложим все получившиеся выражения, начиная с (6.6) (всего будет n выражений), и приведем подобные слагаемые:

(6.9)

Равенство (6.9) верно для любого натурального n. Зафиксируем x, а n устремим к ∞. Ввиду непрерывности f(x) в точке x = 0, находим

(6.10)

где

В левой части (6.10) при конкретном (фиксированном) x стоит некоторая константа, т.е. при данном x ряд в правой части (6.10) сходится к этой константе. Мы же покажем, что этот ряд расходится для любого значения x > 0, таким образом, придём к противоречию.

Для любого натурального k и x > 0 верно неравенство

так что

Гармонический ряд

неограниченно возрастает при увеличении n (известный факт), следовательно,

расходится к ∞. Что и требовалось доказать.

Пример 20. Найти f(x), ограниченную на любом конечном интервале, удовлетворяющую функциональному уравнению:

Решение. x = 0 f(0) = 0;

…………………………………………

переходя к lim при x → ∞ используя непрерывность f(x) и f(0) = 0 получаем, что

.

Пример 21. Решить функциональное уравнение

(6.11)

в классе непрерывных функций.

Решение. Выполнив замену , получим

(6.12)

Складывая (6.11) с уравнением (6.12), умноженным на , получим

Это уравнение решается аналогично уравнению (6.1). Найдем подстановку, переводящую в. Для этого положим . Отсюда. Выполнивn раз подстановку , получим систему уравнений, из которой находим

Отсюда при n → ∞

, или ,

что и подтверждается проверкой.

\

П. 6.2. Дифференцирование

В некоторых случаях для нахождения решения функционального уравнения целесообразно продифференцировать обе части уравнения, если, конечно, производная существует. В результате получим функциональное уравнение, которое содержит и производную неизвестной функции. Решим это уравнение относительно производной. Тогда неизвестная функция является одной из первообразных для найденной производной. Этот метод уже применялся при решении уравнения Коши в классе дифференцируемых функций.

Пример 22. Найти в классе функций, имеющих непрерывные производные, решение уравнения

f(3x+2) = 3f(x), x R. (6.13)

Решение. Попытки решить уравнение методом предельного перехода не приводят к желаемому результату. Левая и правая части (6.13) являются функциями от х. Они равны, следовательно, равны их производные по х. Продифференцируем (6.13) и после сокращения получим

f′(3x+2) = 3f′(x)

Это уравнение уже можно решить методом предельного перехода. Выполнив подстановку , получим цепочку равенств

Ввиду непрерывности , при n → ∞, имеем

Итак, = k, где k === . Первообразная функция f(х) == kx + b. Подставив в (6.13) х = –1, получим f(—1) = 0. Кроме того, f(–1) = – k + b, т. е. k = b.

Легко проверить, что f (х) = k (х + 1) удовлетворяет условию при произвольном k.

Пример 23. Найти все действительные дифференцируемые функции, удовлетворяющие функциональному уравнению

(6.14)

Решение. Пусть f удовлетворяет данному уравнению. Тогда

т.е. f(0)[1+f 2(x)] = 0, и, следовательно, f(0) = 0.

После преобразований имеем

, (6.15)

откуда, с учётом

следует, что

f(x) = C (1+f 2(x)), (6.16)

где C = f′(0). Значит,

,

Условие f(0) = 0 означает, что C1 = 0, т.е. f(x) = tg Cx. Очевидно, все функции вида tg Cx подходят под условие задачи.

Пример 24. Найти функцию f(x), удовлетворяющую уравнению

f′(x) +xf (-x) = ax x R, a = const.

Решение. f′(-x)-xf(x) = -ax. Введём новые функции

Ясно, что функция F(x) - чётная, а G(x) - нечётная функции, причём f(x) = F(x)+G(x). Получим уравнение относительно новых функций F(x) и G(x):

G′(x)-xG(x) = 0, F′(x) +xF(x) = ax,

Так как G(-x) = -G(x), то G(x) ≡ 0 и

Непосредственной проверкой убеждаемся в том, что при любых числах a, A функция f(x) является решением исходного уравнения.