Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_TAU_Doronin_S_V_-_2005.doc
Скачиваний:
508
Добавлен:
17.05.2015
Размер:
3.66 Mб
Скачать

1. Общие сведения о системах автоматического регулирования

1.1. Основные задачи

Перед теорией автоматического регулирования ставятся следующие основные задачи.

1. Разработка методов синтезасистем автоматического регулирования, позволяющих выбрать схему взаимодействия элементов, а также параметры и характеристики этих элементов таким образом, чтобы система в целом удовлетворяла заданным требованиям к её поведению в статике и динамике.

2. Разработка методов анализасистем автоматического регулирования, позволяющих определить, удовлетворяют ли они предъявленным к ним требованиям, и показывающих пути улучшения их статических и динамических свойств.

3. Разработка методов коррекции систем автоматического регулирования, позволяющих нужным образом изменять их статические и динамические свойства.

4. Разработка методов экспериментального исследования и наладки систем автоматического регулирования.

Главной задачейтеории автоматического регулирования следует считатьсоздание методов синтеза. В настоящее время разработка и проектирование систем автоматического регулирования является сложной задачей. Здесь можно наметить следующие основные этапы.

  1. Изучение объектарегулирования, определение его характеристик, параметров, условий работы и воздействий, которые он испытывает.

  2. Формулирование требований к системерегулирования.

  3. Выбор первоначальной схемырегулирования.

  4. Выбор элементов схемырегулирования на основе требований к их мощности, надёжности, имеющихся источников питания, эксплуатационных требований и т.д.

  5. Определение характеристик системырегулирования, обеспечивающих выполнение требований по статике и динамике.

  6. Уточнение структурной схемырегулирования, определение необходимых корректирующих средств, окончательный выбор и расчёт элементов и параметров системы регулирования.

  7. Теоретический анализспроектированной системы, построение переходных процессов, частотных характеристик, исследование влияния различных управляющих и возмущающих воздействий.

  8. Экспериментальное исследованиеспроектированной системы в лабораторных условиях на макетах или моделях и внесение корректировок в схему.

  9. Проектирование и монтажсистемы регулирования.

10. Наладка системырегулирования в реальных условиях работы и опытная эксплуатация.

1.2. Понятие об автоматическом регулировании

Автоматическим регулированиемназывается поддержание постоянного значения какой-либо физической величины или изменение этой величины по некоторому закону при помощи автоматически действующих устройств при любых возмущающих воздействиях.

Поддержание постоянства некоторой физической величины (скорости движения, тока двигателей, температуры, давления, скорости вращения и т. д.) является основной задачей автоматического регулирования. В этом случае система автоматического регулирования называется системой автоматической стабилизации. Однако в ряде случаев к системе автоматического регулирования предъявляется требование изменять физическую величину по какому-либо заранее известному закону. Это называетсяпрограммным регулированием.

Например, по определённой программе может осуществляться изменение режима работы двигателя при его пуске, изменение напряжения на двигателе при движении по переменному профилю, изменение температуры изделия при его термической обработке и т. д.

Наконец, в ряде случаев заранее не является известным тот закон, по которому должна изменяться регулируемая величина. Так, например, возникновение боксования колесных пар или аварийные режимы работы преобразователя не могут быть заранее вычислены или определены, так как они обусловливаются внешними факторами, не поддающимися контролю. Такие системы автоматического регулирования называются следящими системами.

В последнее время большое значение приобретает так называемое экстремальное регулирование, обеспечивающее автоматическое поддержание в каком-либо объекте выгоднейшего эксплуатационного режима. Так, например, система экстремального регулирования может обеспечить поддержание для электровоза режима минимального расхода электроэнергии при различных внешних факторах, действующих на объект.

Получили развитие также самонастраивающиеся системы, у которых параметры не остаются неизменными, а преобразуются при изменении внешних условий, и самоорганизующиеся системы, у которых совокупность правил и логических действий, определяющих работу этих систем, не остаётся неизменной, а преобразуется при изменении внешних условий.

В дальнейшем изложении будем пользоваться следующими терминами.

Регулируемый объект– агрегат, в котором осуществляется автоматическое регулирование (например двигатель, генератор, электровоз).

Автоматический регуляторили просторегулятор– устройство, выполняющее задачу автоматического регулирования в данном объекте (например регулятор скорости, регулятор напряжения или тока).

Система автоматического регулирования(САР) – совокупность регулируемого объекта и регулятора.

Регулируемая величина– физическая величина, которая подлежит автоматическому регулированию.

Возмущающее воздействие– всякое внешнее воздействие на регулируемый объект, которое стремится вызвать отклонение регулируемой величины от заданного значения.

Регулирующее воздействие – воздействие, оказываемое регулятором на регулируемый объект с целью обеспечения протекания в нем желаемого процесса так, чтобы регулируемая величина равнялась заданному значению.

Управляющеевоздействие– некоторая функция времени, определяющая заданное значение регулируемой величины. В более сложных случаях регулируемая величина связана с управляющим воздействием некоторой функциональной зависимостью. Однако при дальнейшем изложении будем под управляющим воздействием понимать именно заданное значение регулируемой величины. Очевидно, что в случае автоматической стабилизации управляющее воздействие представляет собой постоянную величину, в системах программного управления – известную функцию времени и в следящих системах – неизвестную функцию времени.

В результате изменения управляющего или возмущающего воздействия в системе автоматического регулирования наблюдается переходный процесс, заключающийся в переходе от одного установившегося состояния к другому. Установившееся значение разности между начальным и конечным значениями регулируемой величины при постоянном значении управляющего или возмущающего воздействия называетсястатическим отклонением. Установившееся значение разности между заданным и конечным значениями регулируемой величины при тех же условиях называетсястатической ошибкой.

Системы, у которых статическая ошибка отлична от нуля, называются статическими. Системы с нулевой статической ошибкой называютсяастатическими. Понятие статической и астатической систем регулирования должно быть связано с видом воздействия. Можно судить о статизме или астатизме относительно управляющего или возмущающего воздействий. Эти свойства могут совпадать и не совпадать в одной и той же системе.

Разность между начальным и текущим значениями регулируемой величины в переходном процессе называется динамическим отклонением.Разность между заданным и текущим значениями регулируемой величины называетсядинамической ошибкой.

Параметры системы автоматического регулирования являются величинами, определяющими свойства отдельных ее элементов (например масса, момент инерции, индуктивность, электрическое сопротивление, коэффициент трения, коэффициент усиления, передаточное отношение и т. п.).

Параметры могут быть постоянными ипеременными.В том случае, когда параметры постоянные, система называетсялинейной системойспостоянными параметрамиили простолинейной системой.Ни в какой реальной системе параметры никогда не являются строго постоянными, но часто их можно считать таковыми с большей или меньшей степенью точности.

Если некоторые из параметров представляют собой функции времени, то система называется линейной системойс переменными параметрами.Так, например, при движении по сложному профилю пути в электровозе активно расходуется песок (или топливо в тепловозе) изменяется общая масса локомотива, а следовательно и условия реализации максимальной силы тяги.

Часто параметры системы являются функциями не времени, а самих переменных, описывающих поведение системы (обобщённых координат или их производных). Так, например, сопротивление обмоток тягового двигателя (ТЭД) является сложной функцией намагничивающего тока, температуры и т. д.

Если хотя бы один параметр системы не сохраняет постоянного значения, а изменяется при изменении переменных, описывающих поведение системы, то такая система относится к нелинейным системам, хотя понятие нелинейных систем является более широким.

Важным свойством линейной системы является то, что при действии на неё одновременно нескольких внешних воздействий их совместный эффект равен сумме эффектов, вызываемых каждым из внешних воздействий в отдельности. Этот принцип сложения отдельных эффектов, называемых различными внешними воздействиями, называется принципом суперпозиции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]