Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_TAU_Doronin_S_V_-_2005.doc
Скачиваний:
508
Добавлен:
17.05.2015
Размер:
3.66 Mб
Скачать

7.5. Корневые методы

Как было рассмотрено в разд. 5, вид корней характеристического уравнения определяет характер переходных процессов в системе автоматического регулирования. Поэтому можно сформулировать требования по запасу устойчивости и быстродействию системы, не рассматривая сами переходные процессы, а накладывая определенные условия на корни характеристического уравнения.

Для оценки быстродействия системы используется понятие «степени устойчивости». Термин «степень устойчивости» не является удачным, и его следовало бы заменить термином «степень быстродействия». Это объясняется тем, что «степень устойчивости» никак не связана с удалением системы от границы устойчивости, определяемым по склонности системы к колебаниям, но этот термин используется в специальной литературе по ТАУ.

Под степенью устойчивости h понимается абсолютное значение вещественной части ближайшего к мнимой оси корня (рис. 7.6).

Рис. 7.6. Степень устойчивости

Могут быть два случая: когда ближайший корень является вещественным (рис. 7.6, а) и когда к оси мнимых ближе всего расположена пара комплексных корней (рис. 7.6,б).

Корни характеристического уравнения, расположенные ближе всего к оси мнимых, то есть имеющие наименьшую по абсолютной величине вещественную часть, дают в переходном процессе слагаемые (5.8)

, (7.25)

которые затухают наиболее медленно. В большинстве случаев переходный процесс можно считать закончившимся тогда, когда затухнет слагаемое, определяемое ближайшим к мнимой оси корнем. Если ближайшим к мнимой оси является вещественный корень, то составляющая в переходном процессе, от этого корня, будет иметь вид

. (7.26)

Допустив в конце переходного процесса (где Δ = 0,010,05 – ошибка регулирования), можно получить приближенную зависимость между степенью устойчивости и временем переходного процесса

. (7.27)

Так, например, если принять Δ = 0,05, то время переходного процесса составит

. (7.28)

Если ближайшей к мнимой оси является пара комплексных корней , то вместо (7.26) будем иметь

.(7.29)

В этом случае, допустив , нельзя в общем виде определить время переходного процесса, так как для этой цели потребовалось бы решить трансцендентное уравнение. Однако можно найти верхнюю границу переходного процесса, положив в этом уравнении. Тогда имеем:

. (7.30)

Таким образом, и в этом случае величина степени устойчивости будет определять быстроту затухания переходного процесса.

Важным обстоятельством является то, что степень устойчивости можно найти без вычисления значений корней характеристического уравнения. Для этой цели в характеристическом уравнении (5.6) переходят к новой переменной z =  + h. Подставляя в него = z – h, получаем так называемое смещенное уравнение

. (7.31)

Раскрывая скобки в (7.31) и группируя подобные члены, имеем:

. (7.32)

Это уравнение соответствует смещению осей на плоскости корней (см. рис. 7.6) влево на величину h. В результате один (см. рис. 7.6, а) или два (см. рис. 7.6,б) корня попадают на ось мнимых, что соответствует границе устойчивости.

Для вычисления степени устойчивости необходимо применить к смещенному характеристическому уравнению (7.32) любой критерий устойчивости и определить при каком значении h получается граница устойчивости. Напомним, что апериодической границе устойчивости соответствует равенство нулю свободного члена характеристического уравнения

, (7.33)

а колебательной границе устойчивости соответствует равенство нулю предпоследнего определителя Гурвица, прохождение кривой Михайлова через начало координат.

Обратимся теперь к оценке запаса устойчивости системы автоматического регулирования. Склонность системы к колебаниям наблюдается, если в решении характеристического уравнения будут присутствовать комплексные корни вида . Эта склонность может характеризоваться отношением мнимой части корня (угловой частоты колебаний) к вещественной (коэффициенту затухания), которое называетсяколебательностью

. (7.34)

Колебательность связана с другим корневым показателем запаса устойчивости, так называемым затуханием. Комплексные сопряженные корни дают в выражении для переходного процесса (5.8) слагаемые вида

. (7.35)

Найдем затухание амплитуды синусоидального колебания за один период. При некотором значении времени t = t1 эта амплитуда составит

. (7.36)

Через один период имеем:

. (7.37)

Затуханием за период называют величину

. (7.38)

Эта величина обычно выражается в процентах. Подставляя значение амплитуды А2в (7.38), имеем:

(7.39)

или

. (7.40)

Обычно в системах автоматического регулирования допускается затухание за один период не менее чем 90 – 98 %. Так например, если = 98 %, то допустимая колебательность при этом составит

. (7.41)

Соответственно при = 90 % получаем.

Задание определенной колебательности заставляет ограничивать область расположения корней двумя лучами (рис. 7.7, а), которые составляют с вещественной осью угол

. (7.42)

Колебательность системы можно определить без нахождения корней характеристического уравнения подобно тому, как это было рассмотрено выше по отношению к степени устойчивости.

Рис. 7.7. Область расположения корней

При задании допустимых значений колебательности и степени устойчивости область расположения корней должна ограничиваться также вертикальной прямой, проходящей параллельно оси мнимых на расстоянии h (рис. 7.7, б). Расположению корней в этой области соответствует соблюдению требуемого запаса устойчивости, определяемого величиной колебательности(или затуханием) и требуемой степенью устойчивости h, характеризующей быстродействие системы.

Использование корней характеристического уравнения для оценки качества регулирования является не совсем полным, так как вид переходного процесса определяется не только левой, но и правой частью дифференциального уравнения (4.14) или (4.15).

Для того чтобы учесть это обстоятельство, рассмотрим зависимость между регулируемой величиной и управляющим воздействием, записанное посредством передаточной функции замкнутой системы (4.17)

. (7.43)

Передаточная функция замкнутой системы представляет собой дробно-рациональную функцию

. (7.44)

Раскладывая числитель и знаменатель (7.44) на множители, имеем

. (7.45)

Корни числителя 1–mназываютсянулями передаточной функции, так как в точке р =iпередаточная функция обращается в нуль. Корни знаменателя1–nявляются корнями характеристического уравнения, и они называютсяполюсами передаточной функции,то есть при р =iпередаточная функция обращается в бесконечность.

Полюса передаточной функции характеризуют левую часть дифференциального уравнения, а нули – правую. Задание области расположения полюсов и нулей позволяет более полно оценить вид переходного процесса. Не останавливаясь на подробном анализе, укажем без доказательства общие рекомендации, которых желательно придерживаться при выборе расположения полюсов и нулей передаточных функций.

1. Желательно располагать нули вблизи области расположения полюсов. Удаление нулей от области полюсов ведет к увеличению амплитуд собственных колебаний в переходном процессе.

2. Для уменьшения отклонений в переходном процессе часто бывает выгодно удалять полюсы друг от друга.

3. Приближение друг к другу не представляет опасности для тех полюсов, которые расположены далеко от мнимой оси.

Кроме этих рекомендаций, сохраняют свою силу ограничения на область расположения полюсов, накладываемые в связи с требованиями обеспечения определенного запаса устойчивости и быстродействия (см. рис. 7.7, б).

Необходимо отметить, что случай соответствует отсутствию нулей передаточной функции (7.44). В этом случае вид переходного процесса характеризуется только расположением полюсов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]