Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

Ref. p. 40]

 

 

 

 

 

1.1 Fundamentals of the semiclassical laser theory

37

 

 

 

 

 

 

 

 

Jpeak =

ω

 

g0

 

2

 

 

 

 

(peak intensity) ,

(1.1.117)

2σ0T2

 

α

Tπ = 2 τ = 2 T2

α

 

(pulse duration) .

(1.1.118)

 

 

g0

 

The pulse propagates approximately with c, depletes at each position the upper level, and converts this energy via the broadband losses α into heat. The saturated gain just compensates the losses. The pulse is only stable for α > 0 and g0 > 0.

So far solutions of the steady-state SVE-equation were presented, assuming resonance and a homogeneously broadened two-level system. O -resonance interaction and inhomogeneously broadened systems are much more complicated and are discussed in detail in the literature [74Sar, 69Ics, 72Cou]. Moreover, the stability of the pulses with respect to small perturbations was not yet mentioned. It is controlled by the area theorem [67McC, 74Sar].

1.1.7.3.2 Superradiance

The spontaneous emission was neglected in the coherent interaction. An initial state, R = (0, 0, µ n), complete inversion, without external field F would be stable according to the interaction equations (1.1.103). But due to spontaneous emission and amplified spontaneous emission, the R-vector will be pushed a bit out of equilibrium and decay into the stable position R = (0, 0, −µ n). This phenomenon is called superradiance and discussed in detail in Chap. 6.2.

1.1.8 Notations

Symbol

Unit

Meaning

A21

s1

Einstein coe cient of spontaneous emission

B

Vs/m2

magnetic induction

B12, B21

m3/VAs3

Einstein coe cient of induced emission

C

As/m2

component of the Feynman vector R

c0

m/s

vacuum velocity of a plane wave

c

m/s

phase velocity of light in a medium

c1,2

coe cients of the eigenvector

D

As/m2

electric displacement

E

V/m

electric field

E0

V/m

electric-field amplitude

E1,2

VAs

energy eigenstates of the two-level system

Ein

VAs

amplifier input energy

Eout

VAs

amplifier output energy

ES

VAs/m2

amplifier saturation energy density

f (ω, ωA)

line shape factor

G

gain factor

G0

small-signal gain factor

g

m1

gain coe cient

g0

m1

small-signal gain coe cient

g1,2

degeneracies of lower/upper laser level

Landolt-B¨ornstein

New Series VIII/1A1

38

1.1.8 Notations

[Ref. p. 40

 

 

 

gh

ginh

H

H0

H0

Hint

h(ω, ωA) j

J

J

J +, J

Js, Js4

k k k0

n nr n0

n1,2

PA,real

PA

PA0

PH

R

R

R1,2

r S

T1

T2

T2

T2

Tsp

Tπ , T2 π V

v Z Z0

α

χA χe χH χm

δ

n

tr

ωA

ωC

m1

gain coe cient of a homogeneously broadened

m1

transition

gain coe cient of an inhomogeneously broadened

 

transition

A/m

magnetic field

A/m

magnetic-field amplitude

VAs

Hamilton operator of the undisturbed transition

VAs

Hamilton operator of interaction

s

line shape factor

A/m2

current density

Vs/m2

magnetic polarization

VA/m2

intensity

VA/m2

intensity inside the resonator

VA/m2

saturation intensity of 2-, 3- and 4-level system

m1

wave number

m1

wave vector inside the medium

m1

wave vector in vacuum

m

geometrical length of the active medium

complex refractive index

real refractive index

m3

density of active atoms

m3

density of lower/upper population

As/m2

real polarization of the active atoms

As/m2

complex polarization of the active atoms

As/m2

amplitude of the complex polarization

As/m2

complex polarization of the host material

As/m2

Feynman vector

=

 

, average mirror reflectivity

R1 R2

reflectivity of mirror 1, 2

m

position vector

VA/m2

Poynting vector

s

upper-laser-level life time

s

dephasing time due to homogeneous broadening

s

dephasing time due to inhomogeneous broadening

s

resulting dephasing time

s

spontaneous decay time

s

pulse duration of π-, 2 π-pulses

resonator loss factor per transit

m/s

pulse peak velocity

V/A

impedance

V/A

vacuum impedance

m1

absorption coe cient

susceptibility of the active atoms

electric susceptibility

susceptibility of the host material

magnetic susceptibility

s1

detuning

m3

inversion density

m2

transverse delta-operator

s1

line width of homogeneous broadening

s1

line width of collision broadening

Landolt-B¨ornstein

New Series VIII/1A1

Ref. p. 40]

1.1 Fundamentals of the semiclassical laser theory

39

 

 

 

ωR

ωS

ωL,inh, ∆ ωL,h

ε

ε0

|ϕ |ϕ1,2

κ

λ0

Λ

µ

µ0

µ12, µ21

µA

θ

ρω σ(ω) σe σ0

τ

ω

ωA

ωR

s1 s1 s1

8.8542 × 1012 As/Vm

1.38 × 1023 VAs2/K

m s1

4 π × 107 Vs/Am Asm

Asm

VAs2/m3 m2

A/Vm m2

s s1 s1

s1

line width of inhomogeneous broadening line width of saturation broadening

lasing bandwidth of inhomogeneous/homogeneous transitions

permittivity electric constant

state vector of the two-level system eigenfunctions of the two-level system Boltzmann’s constant

vacuum wavelength Rabi frequency permeability magnetic constant

= µA, dipole moment of the two-level transition dipole moment of the two-level transition

beam divergence, slope of the Feynman vector spectral energy density (per dω)

cross section of the two-level system electric conductivity

cross section of the two-level system in resonance pulse width

frequency of the radiation field

resonance frequency of the homogeneously broadened transition

resonance frequency of the inhomogeneously broadened transition

Landolt-B¨ornstein

New Series VIII/1A1

40

References for 1.1

 

 

References for 1.1

17Ein

Einstein, A.: Phys. Z. 18 (1917) 121.

19Mei

Meissner, A.: Patentschrift Reichspatentamt, Deutsches Reich, No. 291604, 1919.

46Blo

Bloch, F.: Phys. Rev. 70 (1946) 460.

47Lam

Lamb, W.E., Retherford, R.C.: Phys. Rev. 72 (1947) 241.

54Bas

Basov, N.G., Prokhorov, A.M.: Zh. Eksp. Teor. Fiz. 28 (1954) 249.

54Max

Maxwell, J.C.: Treatise on electricity and magnetism, New York: Dover Publications

 

Inc., 1954 (reprint of the 3. edition 1891).

57Fey

Feynman, R.P., Vernon, F.L., Helwarth, R.W.: J.Appl. Phys. 28 (1957) 49.

58Sch

Schawlow, A.L., Townes, C.H.: Phys. Rev. 112 (1958) 1940.

60Mai

Maiman, T.H.: Nature (London) 187 (1960) 493.

60Vuy

Vuylsteke, A.A.: Elements of maser theory, N.Y.: v. Nostrand Comp., 1960.

61Mes

Messiah A.: Quantum mechanics, Vol. I–II, Amsterdam: North Holland Publ. Comp.,

 

1961–1962.

61Mor

Morse, P.M.: Thermal physics, New York: W.A. Benjamin Inc, 1961.

63Fra

Frantz, L.M., Nodvik, I.S.: J. Appl. Phys. 34 (1963) 2346.

63Tan

Tang, C.L., Statz, H., de Mars, G.: Phys. Rev. 34 (1963) 2289.

64Lam

Lamb, W.E.: Phys. Rev. A 134 (1964) 1429.

64Sta

Statz, H., Tang, C.L.: Appl. Phys. 35 (1964) 1377.

66Men

Menne, T.J.: IEEE J. Quantum Electron. 2 (1966) 47.

66War

Ward, J.F.: Phys. Rev. 143 (1966) 569.

67McC

McCall, S.L., Hahn, E.L.: Phys. Rev. Lett. 18 (1967) 908.

68Sch

Schi , L.I.: Quantum mechanics, New York.: McGraw Hill, 1968.

69Are

Arecchi, F.T., Masserini, G.L., Schwendimann, P.: Riv. Nuovo Cimento Soc. Ital. Fis. 1

 

(1969) 181.

69Ics

Icsevgi, A., Lamb, W.E.: Propagation of light pulses in a Laser amplifier; Phys. Rev.

 

185 (1969) 517.

69McC

McCall, L., Hahn, E.L.: Phys. Rev. 183 (1969) 457.

70Hak

Haken, H.: Laser theory, Handbuch der Physik, Vol.XXV/2c, Fl¨ugge, S. (ed.), Berlin:

 

Springer-Verlag, 1970.

71Lam

Lamb, G.L.: Rev. Mod. Phys. 43 (1971) 99.

72Cou

Courtens, E.: Nonlinear coherent resonant phenomena, in: Laser handbook Vol. 2,

 

Arecchi, F.T., Schulz-Dubois, E.O. (eds.), Amsterdam, New York, Oxford: North Hol-

 

land Publ. Comp, 1972, p. 1259.

Landolt-B¨ornstein

New Series VIII/1A1

 

References for 1.1

41

 

 

 

74Loy

Loy, M.M.T.: Phys. Rev. Lett. 32 (1974) 814.

 

74Sar

Sargent III, M., Scully, O.M., Lamb jr, W.E.: Laser physics, Reading (MA): Addison-

 

Wesley Publ. Comp., 1974.

 

75All

Allen, L., Eberly, J.H.: Optical resonance and two level systems, New York: J.Wiley &

 

Sons, 1975.

 

75Kri

Krieger, W., Toschek, P.E.: Phys. Rev. A 11 (1975) 276.

 

77Coh

Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum mechanics, Vol. 1, 2, New York:

 

John Wiley, 1977.

 

78Dri

Driscoll, W.G., Vaugham, W. (eds.): Handbook of optics, New York: McGraw Hill Publ.

 

Comp., 1978.

 

81Ver

Verdeyen, J.T.: Laser Electronics, Englewood Cli s, N.J.: Prentice Hall, 1981, p. 175.

82Fer

Ferguson, T.R.: Vector modes in cylindrical resonators; J. Opt. Soc. Am. 72 (1982)

 

1328–1334.

 

82Gra

Gray, D.E. (ed.): American institute of physics handbook, New York: McGraw-Hill Book

 

Company, 1982.

 

84She

Shen, Y.R.: The principles of nonlinear optics, New York: John Wiley & Sons, 1984,

 

563 pp.

 

85Pal

Palik, E.D. (ed.): Handbook of optical constants of solids, New York: Academic Press,

 

1985.

 

86Eas

Eastham, D.A.: Atomic physics of lasers, London: Taylor & Francis, 1986, 230 pp.

 

86Sie

Siegman, A.E.: Lasers, Mill Valley (Ca): University Science Books, 1986.

 

88Her

Hertz, H.: Pogg. Ann. Phys. Chem. (2) 34 (1888) 551.

 

89Yar

Yariv, A.: Quantum electronics, New York: John Wiley & Sons, 1989.

 

91Wei

Weiss, C.O., Vilaseca, R.: Dynamics of lasers, Weinheim, Germany: VCH Verlagsge-

 

sellschaft, 1991.

 

92Koe

Koechner, W.: Solid state Laser engineering, Berlin: Springer-Verlag, 1992.

 

93Sve

Svelto, O., Hanna, D.C.: Principles of Lasers, New York, London: Plenum Press, 1993,

 

p. 223.

 

93Wit

Wittrock, U., Kumkar, M., Weber, H.: Coherent radiation fields with pure radial or

 

azimuthal polarisation, Proc. of the 1st international workshop on laser beam charac-

 

terisation, Mejias, P.M., Weber, H., Martinez-Herrero, R., Gonz´ales-Urena, A. (eds.),

 

Madrid: Sociedad Espanola de Optica, 1963, p. 41.

 

95Man

Mandel, L., Wolf , E.: Optical coherence and quantum optics, Cambridge: Cambridge

 

University Press, 1995.

 

95Wal

Walls, D.F., Milburn, G.J.: Quantum optics, Berlin: Springer Verlag, 1995.

 

97Scu

Scully, O.M., Zubairy, M.S.: Quantum optics, Cambridge: Cambridge University Press,

 

1997.

 

Landolt-B¨ornstein

New Series VIII/1A1

42

References for 1.1

 

 

99Ber

Bergmann/Sch¨afer: Lehrbuch der Experimentalphysik, Vol. 3, Optics, Niedrig, H. (ed.),

 

New York: W. de Gruyter, 1999.

99Bor

Born, M., Wolf, E.: Principles of optics, Cambridge: Cambridge University Press, 1999.

99Jac

Jackson, J.D.: Classical electrodynamics, New York: John Wiley & Sons, 1999, p. 410.

00Dav

Davies, C.C.: Laser and electro-optics, Cambridge: Cambridge Univ. Press, 2000.

01I

I ¨ander, R.: Solid State Lasers for Material Processing, Berlin: Springer-Verlag, 2001,

 

p. 257–318.

01Men

Menzel, R.: Photonics, Berlin: Springer-Verlag, 2001.

01Vog

Vogel, W., Welsch, D.G., Wallentowitz, S.: Quantum optics – an introduction, Berlin:

 

Wiley-VCH, 2001.

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика