Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

Ref. p. 187]

 

4.1 Frequency conversion in crystals

151

 

 

 

 

 

 

Table 4.1.4. Units and conversion factors.

 

 

 

 

 

 

 

 

 

 

 

Nonlinear coe cient

MKS or SI units

 

CGS or electrostatic units

 

 

 

 

 

 

 

χ(1)

1

(SI, dimensionless)

=

 

1

(esu, dimensionless)

ij

 

 

 

 

4 π

 

 

 

 

 

 

 

dij or χ(2)

1

V1m

=

 

3 × 104

(erg1 cm3) 21

ijk

 

 

 

 

4 π

 

 

 

 

 

 

 

 

 

 

 

 

4 π

1

δij

1

C1m2

=

 

 

(erg1 cm3) 2

3 × 105

Note that in SI units P (n)

=

ε0 χ(n)E n (with P (n)

expressed in C m2 ), whereas in CGS or esu

units P (n) = χ(n)E n (with P (n)

expressed in esu).

 

 

 

 

 

4.1.2.5 Frequency conversion e ciency

4.1.2.5.1 General approach

The conversion e ciency of a three-wave interaction process for the case of square nonlinearity

P nl = ε0 χ(2)E2

(4.1.14)

can be determined from the wave equation derived from Maxwell’s equations [64Akh, 65Blo, 73Zer, 99Dmi], see also (1.1.4)–(1.1.7),

× × E +

(1 + χ(1)) 2E

=

1

2P nl

(4.1.15)

c2

 

∂t2

ε0 c2

 

∂t2

with the initial and boundary conditions for the electric field E .

An exact calculation of the nonlinear conversion e ciency for SHG, SFG, and DFG generally requires a numerical calculation. In some simple cases analytical expressions are available. In order to choose the proper method, the contribution of di erent e ects in the nonlinear mixing process should be determined. For this purpose the following approach is introduced [99Dmi]:

Consider the e ective lengths of the interaction process:

1.Aperture length La:

La = d0 ρ1 ,

(4.1.16)

where d0 is the beam diameter.

 

2. Quasistatic interaction length Lqs:

 

Lqs = τ ν1 ,

(4.1.17)

where τ is the radiation pulse width and ν is the mismatch of reverse group velocities. For SHG

 

ν = uω1 − u2ω1 ,

(4.1.18)

 

where uω and u2ω are the group velocities of the corresponding waves ω and 2ω .

 

3.

Di raction length Ldif :

 

 

L

= k d2 .

(4.1.19)

 

dif

0

 

4.

Dispersion-spreading length Lds:

 

 

Lds = τ 2g1 ,

(4.1.20)

Landolt-B¨ornstein

New Series VIII/1A1

152

 

 

 

4.1.2 Fundamentals

[Ref. p. 187

 

 

 

 

 

where g is the dispersion-spreading coe cient

 

1

 

2k

 

g =

 

 

.

(4.1.21)

2

∂ ω2

5. Nonlinear interaction length Lnl:

 

Lnl = (σ a0)1 .

(4.1.22)

Here σ is the nonlinear coupling coe cient:

 

σ1,2 = 4 π k1,2 n1,22 de ,

(4.1.23)

σ3 = 2 π k3 n32 de ,

(4.1.24)

and

 

 

 

a0 = a12

1

 

(0) + a22 (0) + a32 (0) 2 ,

(4.1.25)

where an(0) are the wave amplitudes of interacting waves λ1 , λ2 , and λ3

at the input

surface of the crystal.

 

The length of the crystal L should be compared with Le from above equations. If L < Le the respective e ect can be neglected.

4.1.2.5.2 Plane-wave fixed-field approximation

When the conditions L < Lnl and L < Le are fulfilled, the so-called fixed-field approximation is realized. For SHG, ω + ω = 2ω and ∆k = 2kω − k2ω , the conversion e ciency η is determined by the equation:

η = P2ω /Pω =

2 π2de2 L2Pω

 

sinc2

|k| L

.

ε0 c nω2 n2 ω λ22 A

2

 

 

 

For SFG, ω1 + ω2 = ω3 and ∆k = k1 + k2 − k3 , the conversion e ciency η is:

η = P3/P1 =

8 π2de2 L2P2

sinc2

|k| L

.

ε0 c n1 n2 n3 λ32 A

2

 

 

 

For DFG, ω1 = ω3 − ω2 and ∆k = k1 + k2 − k3 , the conversion e ciency η is:

η = P1/P3 =

8 π2de2 L2P2

sinc2

|k| L

.

ε0 c n1 n2 n3 λ12 A

2

 

 

 

(4.1.26)

(4.1.27)

(4.1.28)

Note that all the above equations are for the SI system, i.e. [de ] = m/V ; [P ] = W ; [L] = m ; [λ] = m ; [A] = m2 ; ε0 = 8.854 × 1012 A s/ (V m) ; c = 3 × 108 m/s .

When the powers of the mixing waves are almost equal, the conversion e ciency is for THG,

ω + 2 ω = 3ω :

 

 

P3ω

1 ;

(4.1.29)

η =

(P2 ω Pω ) 2

Landolt-B¨ornstein

New Series VIII/1A1

Ref. p. 187]

4.1 Frequency conversion in crystals

153

 

 

 

for FOHG in the case of ω + 3ω = 4ω :

P4ω

η = 1 ,

(P3ω Pω ) 2

or for 2 ω + 2 ω = 4ω :

η= P4ω ;

P2 ω

for SFG, ω1 + ω2 = ω3 :

P3

η = 1 ; (P1P2) 2

for DFG, ω1 = ω3 − ω2 :

P1

η = 1 .

(P2P3) 2

(4.1.30)

(4.1.31)

(4.1.32)

(4.1.33)

In some cases (mentioned additionally) the conversion e ciency is calculated from the power (energy) of fundamental radiation, e.g. for fifth harmonic generation, ω + 4ω = 5ω :

η =

P5ω

.

(4.1.34)

 

 

Pω

 

Corresponding equations are valid for energy conversion e ciencies by substituting the pulse energy instead of power in the above equations.

The e ciency η in the case of OPO is calculated by the equation

η =

EOPO

,

(4.1.35)

 

 

E0

 

where EOPO is the total OPO radiation energy (signal + idler) and E0 is the energy of the pump radiation. Conversion e ciency can also be determined in terms of pump depletion:

Eunc

 

(4.1.36)

η = 1 Epump

,

where Eunc is the energy of unconverted pumping beam after the OPO crystals. Pump depletions are usually significantly greater than the ordinary η values.

The quantum conversion e ciency (for the ratio of converted and mixing quanta) in the case of exact phase-matching (∆ k = 0) for sum-frequency generation, ω1 + ω2 = ω3 , is determined by the following equation (SI system):

η = P1

λ1

= sin2

2 π de L

 

 

 

 

,

(4.1.37)

 

ε0 c n1 n2 n3 λ1 λ3 A

 

P3

λ3

 

 

 

 

2P2

 

 

and for di erence-frequency generation, ω1 = ω3 − ω2 :

 

 

η = P3

λ3

= sin2

2 π de L

 

 

.

(4.1.38)

ε0 c n1 n2 n3 λ1 λ3 A

 

P1

λ1

 

 

 

 

2P2

 

 

In the presence of linear absorption all the above equations for conversion e ciencies should be multiplied by the factor

exp (−αL) 1 − αL ,

(4.1.39)

where α is the linear absorption coe cient of the crystal.

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика