Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

120

3.1.7 Beam propagation in optical systems

[Ref. p. 131

 

 

 

3.1.7 Beam propagation in optical systems

Paraxial propagation of light in a system given by its ABCD-matrix can be calculated

for (coherent) Gaussian beams by q-parameter propagation (Sect. 3.1.7.2),

for general field distributions by Collins integral (Sect. 3.1.7.4),

for second-order moments of the electric field by propagation of the Wigner distribution in Chap. 2.2 (beam characterization).

3.1.7.1 Beam classification

In Table 3.1.17 various types of beams are listed.

3.1.7.2Gaussian beam: complex q-parameter and its ABCD-transformation

3.1.7.2.1 Stigmatic and simple astigmatic beams

3.1.7.2.1.1 Fundamental Mode

Stigmatic beam and rotational-symmetric system:

both longitudinal cross sections are treated equally,

Simple astigmatic beam and elements with a symmetry plane:

two di erent sets of ABCD-matrices for the tangential and sagittal cut (see Table 3.1.12).

The introduction of the complex q-parameter [66Kog1, 66Kog2]

1

=

1

 

i λ

qx(z)

Rx(z)

 

π wx(z)2

formalizes the x-part of the fundamental-mode equation (3.1.31)

 

 

 

 

 

 

 

 

 

 

x2

kx2

 

 

(x, z) =

w0x

 

U0

 

 

exp

 

 

i

 

wx(z)

wx(z)2

2Rx(z)

to the simple complex shape

 

 

 

 

 

 

 

 

U0

(x, z) =

 

 

1

 

 

exp

i

kx2

.

 

 

 

 

 

 

 

 

 

 

1 + i z0

 

qx(z)

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

(3.1.110)

(3.1.111)

(3.1.112)

In Fig. 3.1.40 the transfer of a field distribution by an optical system given by its ABCD-matrix is shown. In Table 3.1.18 the q-parameter transfer for stigmatic and simple astigmatic beams is given.

Landolt-B¨ornstein

New Series VIII/1A1

B¨ornstein-Landolt

VIII/1A1 Series New

Table 3.1.17. Types of beams.

Beam

Generated by

Beam type is characterized Examples

References with practical

[69Arn, 05Hod]

 

by the shape of the matrix S

example calculations

 

 

(3.1.99)

 

Stigmatic

x

 

Fundamental-mode laser

 

 

 

 

 

 

 

 

 

θx

 

 

 

 

 

 

 

w0x

 

 

 

 

 

 

 

w0y

θy

z

 

 

 

 

y

 

 

 

 

 

 

 

Simple astigmatic

 

Semiconductor lasers

 

 

x

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anamorphic optical system

z2

z1

z

(f.e. cylindrical lens) in com-

 

bination

with

a

stigmatic

y

 

 

 

 

beam

 

 

 

 

 

 

 

 

 

 

 

General astigmatic

 

General

rotation

of

an

 

 

 

anamorphic

optics

in

 

 

 

relation

with

a

simple

 

 

 

astigmatic beam

 

 

Axx = Ayy ; Axy = Ayx = 0 ,

and the same for B, C, D

Axx = Ayy ; Ayx = Axy = 0

(no mixing of both orthogonal planes),

and the analog for B, C, D

TE00-mode handling in laser

[75Ger, 86Sie, 91Sal],

applications

[96Yar, 01I , 05Hod],

 

see Sect. 3.1.7.2.1

ring lasers,

[05Hod, 99Gao, 86Sie],

lasers, including dispersive

see Sect. 3.1.7.2.1

 

elements (dye-lasers),

 

tolerance calculations for resonators and beamguiding optics

General case

Transformation of higher-

[05Hod, 99Gao],

 

order radiation modes

see Sect. 3.1.7.2.2

131] .p .Ref

optics Linear 1.3

121

122

 

 

 

 

3.1.7 Beam propagation in optical systems

[Ref. p. 131

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optical system

 

 

 

Field

 

characterized by its

Field

 

 

 

 

 

 

 

u I

 

 

A B

- matrix

 

uO

 

 

 

 

C D

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.40. Transfer of a field distribution by an optical system

Input plane

 

 

 

 

 

 

 

Output plane given by its ABCD-matrix.

 

Table 3.1.18. q-parameter transfer for stigmatic and simple astigmatic beams.

 

 

 

 

 

 

 

 

Given

 

 

 

 

Propagated field

 

 

 

 

 

 

 

 

 

– Gaussian beam in the input plane:

u I(x, z) = exp i kx2 . (3.1.113) 2q I x

ABCD-matrix of the optical system (see Tables 3.1.11 and 3.1.12).

Starting point:

R I = 1/Re (1/q I) ,

w I = 1/ −π Im (1/q I)/λ .

– Transformation of the q-parameter:

 

 

 

 

 

 

 

 

q O x =

Aq I x + B

.

 

 

 

 

 

 

 

 

 

 

 

 

(3.1.114)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cq I x + D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Field in the output plane:

 

 

 

 

 

 

 

 

 

 

 

u O(x, z) = exp i

 

kx2

 

 

 

 

 

 

 

(3.1.115)

2q O x

 

 

 

 

 

 

with the real parameters of the output beam [96Gro]:

 

 

– beam radius:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w O x = w I x

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(3.1.116)

π w2

2

+

A +

R I x

2

 

 

 

 

 

 

I x

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

λB

 

 

 

 

 

 

 

 

 

 

 

 

 

– curvature radius of the wavefront:

 

 

 

 

 

 

 

 

R O x =

 

 

 

A + R I x

2

π w2I x

2

 

 

.

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

λB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A + R I x

 

 

C + R I x + D

 

 

 

 

2

 

 

 

 

 

 

π w2I x

 

 

 

 

B

 

 

 

 

 

D

 

 

 

 

λB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.1.117)

Example 3.1.15. Given: the waist of a Gaussian beam

u I = exp

x2

= exp i

kx2

 

w02

2q1

with q1 = i z0 in comparison with (3.1.110).

Asked: free-space propagation along the distance z with the ABCD-matrix 1 z 0 1

Solution:

q2 = Aq1 + B = z + i z0

Cq1 + D

and

 

 

 

 

 

 

 

 

 

 

 

 

U O = A +

B

 

1/2

exp i

kx2

 

= 1 +

z

 

1/2

exp i

kx2

 

q1

 

2q2

i z0

 

2(z + i z0)

.

.

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика