Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
2.78 Mб
Скачать

78

3.1.3 Solutions of the wave equation in free space

[Ref. p. 131

 

 

 

3.1.3 Solutions of the wave equation in free space

Following (3.1.2), each of the wave solutions given in this section must be multiplied with the factor ei ω t to obtain the propagating wave of (3.1.1).

3.1.3.1 Wave equation

The solutions of the wave equation (3.1.4) are vector fields.

3.1.3.1.1 Monochromatic plane wave

E = E0 exp {−i k0 nˆ er + i ϕ} ,

nˆ

H = c0µ0 (e × E0) exp {−i k0 nˆ er + i ϕ}

with

r : position vector,

e : unit vector normal to the wave fronts, k0 = 2π0 : wave number,

nˆ : complex refractive index, ϕ : phase.

For the phase velocity and the wave group velocity see Sect. 3.1.5.3.

3.1.3.1.2 Cylindrical vector wave

E = E0 ez H0(2)(k0ρ) ,

(k0ρ) (ρ > λ)

H = i c0µ0 ez ×

ρ

H1

 

E0

ρ

(2)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

for time-harmonic electric source current density on the z-axis of a cylindrical coordinate system with the coordinates (ρ, ϕ, z) : (radial distance, azimuthal angle, z-axis) [94Fel, Chap. 5].

Hm(2) : mth order Hankel function of the second kind [70Abr];

the change of convention in Sect. 3.1.1 includes: Hm(2) Hm(1) [94Fel, p. 487]; ρ : radial position vector,

ez : unit vector along the z-axis.

3.1.3.1.3 Spherical vector wave

 

 

 

 

 

E = E

0 ·

(n

×

p)

×

n

·

 

exp(i k0 nˆ r)

,

 

 

 

(3.1.21)

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H =

E0

 

·

(n

×

p)

·

exp(i k0 nˆ r)

 

(r

 

λ

)

(3.1.22)

 

 

 

c0µ0

 

 

 

 

 

r

 

0

 

 

Landolt-B¨ornstein

New Series VIII/1A1

Соседние файлы в предмете Оптика