Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРАКТИКА УМТС А4 книга.doc
Скачиваний:
157
Добавлен:
13.11.2018
Размер:
1.66 Mб
Скачать

2.8. Потеря управляемости при ветре

Под потерей управляемости при ветре понимают неспособность судна держаться на заданной линии пути или поворачивать в желаемом направлении.

Рассмотрим механизм потери управляемости (см. рис. 2.15). Прямолинейному движению судна с постоянным углом ветрового дрейфа должны соответствовать равенства:

Rкy-Ray-Rpy=0

Mк-Ma+Mp=0

или

Rкy-Ray+Rpy=0

Mк+Ma-Mp=0

в зависимости от того, является судно уваливающимся или самоприводящимся. Если поперечная сила руля или ее момент не в состоянии компенсировать суммарное действие аэродинамических и гидродинамических сил и моментов на корпусе судна, то равенства не будут выполнены и судно потеряет управляемость. У уваливающегося судна аэродинамический и гидродинамический моменты действуют в противоположных направлениях. Для компенсации их разности достаточно перекладки руля на небольшой угол. С усилением ветра дрейф судна увеличится, для удержания его на заданной линии пути потребуется еще большая перекладка руля на ветер. Однако по мере разворота судна к ветру его скорость будет падать, а поперечная гидродинамическая сила на корпусе уменьшаться, что при достаточной силе ветра может привести к неравенству Rау+Rpy>Rку и никакой дальнейшей перекладкой руля удержать судно на заданной линии пути будет невозможно. Легко понять, что перед потерей управляемости у уваливающегося судна будет наблюдаться максимальный угол дрейфа, за которым последует снос с линии пути. Данное обстоятельство должно учитываться прежде всего при плавании по участкам пути ограниченной ширины.

У самоприводящегося судна аэродинамический и гидродинамический моменты действуют согласованно, стремясь привести судно к ветру. Для их компенсации требуются большие углы перекладки руля под ветер. При сильном ветре перекладки руля может не хватить, чтобы уравновесить аэродинамический и гидродинамический моменты на корпусе, т. е. Макр, и судно будет неспособно повернуть под ветер. Таким образом, если у уваливающегося судна потере управляемости предшествует максимальный угол дрейфа, то у самоприводящегося судна — максимальный угол перекладки руля.

Судоводители должны учитывать и то, что существуют опасные курсовые утлы ветра, при которых наблюдается либо максимальный угол дрейфа, либо максимальный угол перекладки руля. Это связано как с величиной силы давления ветра, так и с плечом l1. Для уваливающихся судов опасными являются курсовые углы кажущегося ветра 40 — 60°, для самоприводящихся — 120 — 150°.

Следует отметить также, что потеря управляемости судном зависит не от абсолютной скорости ветра, а от отношения скорости ветра к скорости судна. Это хорошо видно, если условия потери управляемости переписать в виде:

Kaw2+Kpv2>Kкv2

Kaw2+Kкv2>Kpv2

Ka,Kк ,Kp – коэффициенты сил;

К'а, К'к, K'р — коэффициенты моментов.

Или, разделив обе части неравенств на v2, получим:

;

.

Рис. 2.16. Диаграмма потери управляемости танкера «София» в балласте (γ = 20°)

Последнее из неравенств указывает на возможность получения диаграммы потери управляемости опытным путем. Диаграмма (рис. 2.16) представляет собой зависимость скорости кажущегося ветра w, при которой руль перестает быть эффективным, от скорости судна для различных курсовых углов кажущегося ветра q. Во время эксперимента выполняется ряд галсов, отличающихся на 10—20°. На каждом галсе, снижая постепенно обороты и замеряя скорости кажущегося ветра, фиксируют скорость судна, при которой оно перестает слушаться руля. Руль при этом перекладывают не более 20°, так как необходим запас для компенсации рыскания судна на волнении. Поскольку потеря управляемости зависит от отношения w/v, а не от v, то эксперимент можно проводить при умеренном ветре, не дожидаясь штормовой погоды.