Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭлектростатикаПостоянный ток.doc
Скачиваний:
10
Добавлен:
16.12.2018
Размер:
1.11 Mб
Скачать

Связь между напряжённостью и потенциалом.

Мы выяснили, что электрическое поле можно описывать либо с помощью векторной величины Е, либо с помощью скалярной величины φ. Очевидно, что между Е и φ должна быть связь. Найдём эту связь.

Элементарная работа dA совершаемая при беcконечно малом перемещении заряда q' в электростатическом поле в направление dl, равна:

эта работа совершается за счёт убыли потенциальной энергии, следовательно:

с другой стороны, для dW можно написать:

И з (1), (2) и (3) имеем

Элемент длины силовой линии,

п оэтому:

Н апряжённость поля численно равна скорости изменения потенциала вдоль силовой линии.

Выражение (4) можно преобразовать и к другому виду

Отсюда следует, что вблизи данной точки поля потенциал изменяется наиболее быстро в направлении силовой линии. Знак минус в (5) указывает, что вектор Е направлен сторону наиболее быстрого убывания потенциала.

В векторном анализе градиентом скалярной величины а, являющейся функцией пространственных координат, называется вектор grada направленный в сторону наиболее быстрого возрастания этой величины и численно равный скорости её изменения в этом направлении. Из сказанного выше ясно, что связь между Е и φ имеет вид:

Напряженность в какой-либо точке электростатического поля равна градиенту потенциала в этой точке, взятому с обратным знаком.

В общем случае, когда

Рассмотрим поле точечного заряда

С огласно (5):

- что соответствует ранее полученной формуле для напряжённости.

Наличие связи между Е и φ позволяет по известным значениям φ найти напряжённость поля в каждой точке. Можно решить и обратную задачу, т.е. по заданным значениям Е в каждой точке найти разность потенциалов между двумя произвольными точками поля.

Из (5) следует:

d r- элемент длины в направлении силовой линии.

Найдём разность потенциалов между двумя бесконечными разноимённо заряженными плоскостями (поле плоского конденсатора).

E =const

Графики для е и φ в этом случае имеют вид (рис.6)

В случае поля созданного заряженной по поверхности сферой графики для Е и φ имеют следующий вид (рис.7)

В не сферы

E и φ как для точечного заряда:

В нутри сферы Е=0

Распределение зарядов на проводнике.

Проводники это тела, в которых электрические заряды способны перемещаться под действием как угодно слабого электростатического поля.

Вследствие этого сообщенный проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.

Таким образом, напряженность электрического поля внутри проводника должна быть равной нулю.

  1. Е=0

Так как , то , φ=const

Потенциал внутри проводника должен быть постоянен.

  1. На поверхности заряженного проводника вектор напряженности Е должен быть направлен по нормали к этой поверхности, иначе под действием составляющей, касательной к поверхности (Езаряды перемещались бы по поверхности проводника.

Таким образом, при условии статического распределения зарядов напряженность на поверхности

E=En. E

где En—нормальная составляющая напряженности.

Отсюда следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.

3. В заряженном проводнике некомпенсированные заряды располагаются только на поверхности проводника.

Проведём внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника. Согласно теореме Гаусса, суммарный заряд этого объёма равен:

Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет. Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, то это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут. Это следует также из того, что одноимённые заряды отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности.

Исследования показали, что плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.

Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд перейдёт на наружную поверхность проводника, повышая потенциал последнего. Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника. Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора. В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы. Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.

Проводники во внешнем электрическом поле.

В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электризацией через влияние или электростатической индукцией.

Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Едоп не скомпенсирует внешнее поле Е0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.

Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е0. Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.

Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний , то первый проводник останется заряженным электричеством противоположного знака.

Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей ( экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном). Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки.