Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1ый семестр.doc
Скачиваний:
27
Добавлен:
17.08.2019
Размер:
1.03 Mб
Скачать

Глава1. Проблема аппроксимации

§1. Полиномиальная апппроксимация

Постановка задачи

Из теорем математического анализа известно, что всякая непрерывная на отрезке [a;b] функция f(x) может быть хорошо приближена полиномом Pn(x).

Теорема Вейерштрасса:

Однако эта теорема не дает ответа на вопрос о существовании хорошего интерполяционного полинома для заданного множества точек {( xi , yi )}.

x

x0

xn

y

y0

yn

Пусть функция f(x) известна только в узлах некоторой сетки xi, т.е. задана таблицей:   (xk≤xk+1)

Задача нахождения значений функции:

a) между узлами ( ) – задача интерполяции

б) вне узлов ( ) – задача экстраполяции

Теорема:

Для всякой дискретной функции f(x), заданной предыдущей таблицей существует многочлен Pn(x) степени n, совпадающий в узлах с этой функцией (Pn(xk)=yk ) и он единственен. (1)

Доказательство

Будем искать этот полином в виде: Pn(x)=a0+a1x+..+anxn.

Запишем условие (1) в виде системы:

(2)

Будем считать, что все узлы – разные, т.е xk< xk+1.

В данной системе неизвестные – ak. Определитель системы – отличный от нуля определитель Вандермонда:

Т.о. решение системы (2) существует, а значит существует многочлен Pn(x).

Докажем его единственность. Предположим противное: существует Qn(x):

. Тогда полином Pn(x)-Qn(x) равен 0 в (n+1) точке Pn(x)-Qn(x)≡0 Pn(x)≡Qn(x). Что и требовалось доказать.

Определение Полином Pn(x) – интеполяционный полином для функции f(x).

П ример Рунге Рассмотрим функцию f(x)= .

т.е. является аналитической функцией.

Рассмотрим на [-1;1] ее интерполяционный многочлен

(для значений по равномерным узлам): Pn(xk)= .

C возрастанием n многочлен также возрастает,

увеличивая аксиляции колебаний.

§2. Интерполяционный полином в форме Лагранжа

Из системы (2) получим систему следующего вида:

(3)

Будем считать неизвестными a0,a1..an , -1.

Полученная система имеет (n+1) порядок. Ее нетривиальное решение из предыдущей теоремы существует, следовательно, ее определитель равен 0 (иначе решение (3) было бы нулевым).

Разложим этот определитель по последнему столбцу:

где - многочлены n-ой степени, .

Перпишем последнее равенство в виде:

где .

Заметим, что:

1) - многочлен n-ой степени

2)

3)

Следовательно, многочлен определяется единственным образом.

Рассмотрим следующий многочлен (n+1)ой степени:

Обозначим .

Заметим, что:

Т.о. = , т.е. интерполяционный полином имеет вид:

- интерполяционный полином Лагранжа

Погрешность интерполяции

Представим функцию f(x) в виде: f(x)=Pn(x)+Rn(x), где Rn(x) – погрешность интерполяции. Заметим, что Rn(x) зависит от свойств f(x) (так если f(x) линейна, то Rn(x)≡0 при n>2).

Будем считать априорно, что а

Запишем погрешность в виде: Rn(x)=kωn+1(x)+φ(x).

Тогда φ(x)=f(x)-Pn(x)- kωn+1(x) и φ(xk)=0, . (4)

Выберем k из условия φ(x’)=0, где x’ – точка, в которой оценивается погрешность:

Из уравнения φ(x’)=0 получим: .

При таком выборе k φ(x’) и обращается в ноль в (n+2) точках: x0…xn,x’.

Тогда по т. Ролля обращается в ноль в по крайней мере (n+1) точке. И т.д.

По т. Ролля имеет хотя бы один нуль. Т.е.

Т.о. из (4) получим:

.

Тогда , а значит , т.к. точка x’ была выбрана произвольно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]