Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1ый семестр.doc
Скачиваний:
27
Добавлен:
17.08.2019
Размер:
1.03 Mб
Скачать

2.Матрица элементарного поворота

Рассмотрим матрицу элементарного поворота в двух пространствах:

1)в пространстве R2:

Рассмотрим матрицу , где с=cosα, s=sinα .

Тогда .

Докажем, что U – ортогональная матрица:

;

А следовательно, U – ортогональная матрица.

Задача: доказать, что линейный оператор φ, соответствующий матрице U, есть оператор поворота на угол α.

2) в пространстве Rn:

Рассмотрим матрицу , где с=cosα, s=sinα .

Т.е. upp = uqq = c, upq = - uqp = s, uii = | i≠p,q | =1, uij = | i,j≠p,q | = 0.

Задача: доказать, что линейный оператор Φ, соответствующий матрице U, есть оператор поворота на угол α в n-мерном пространстве.

§2. Вариационное свойство собственных значений

Матрица А неотрицательно определена, если .

Лемма Собственные числа неотрицательно определенной матрицы неотрицательны.

Доказательство

Пусть А – неотрицательно определенная матрица, λ1 – её собственное число.

Тогда .

Т.к. .

Что и требовалось доказать.

Матрица А симметричная , если .

Лемма 1 Если А симметрична, неотрицательно определена и (Ay,y)=0, то Ay=0. Геометрически: А не может сделать вектор у ортогональным самому себе, а может лишь обратить его в ноль.

Доказательство

Рассмотрим выражение (A(y+tz),y+tz),

где z – произвольный вектор;

t – вещественное, малое число (t<<1).

Если бы (Ay,z)≠0, то знак всего выражения можно было бы сделать отрицательным, выбирая знак t, что противоречило бы условию неотрицательной определенности А.

Значит, (Ay,z)=0.

Т.к. элеент z выбирался произвольно, то Ay=0.

Что и требовалось доказать.

Рассмотрим выражение: .

Функция n переменных F(y)=(Ay,y) непрерывна на единичной сфере . Следовательно, по первой теореме Вейерштрасса F(y) достигает на S1 своих точных граней. Это означает, что .

Лемма 2 (вариационное свойство) Если А – симметричная матрица, то - собственное число матрицы А.

Доказательство

Из приведенных выше рассуждений и достигается в некоторой точке .

Т.к. , то || y ||=1, а значит .

Получим: . (*)

Из выбора точку y’ верно: (Ay,y)≤λ1 для любого вектора y из S1.

Т.е. Последнее утверждение верно и для любого вектора x из пространства Rn. Т.е. - неотрицательно определенная матрица.

Следовательно, из (*), используя Лемму 1, получим:

, т.е. λ1 – собственное число матрицы А.

Что и требовалось доказать.

§3. Приведение симметричной матрицы к диагональному виду

Из теорем алгебры:

Любое собственное число λ произвольной матрицы А равно скалярному произведению (Ax,x), где x – некоторый вектор: || x ||=1.

Первый шаг

Пусть λ1 – максимальное собственное число матрицы А, т.е. .

Обозначим как y1 – собственный вектор матрицы А, отвечающий λ1: || y1 ||=1.

Второй шаг

Обозначим как Ln-1 – подпространство, ортогональное подпространству, образованному вектором y1 (т.к. dim {y1}=1, то dim Ln-1=n-1).

Очевидно, что Ln-1 инвариантное подпространство для А (т.е. если , то ).

Действительно, пусть

Обозначим . Тогда из Леммы 2:

.

Т.о. y2 – собственный вектор матрицы А, ортогональный y1.

Третий шаг

Будем рассматривать далее подпространство , повторим указанные в шаге два рассуждения.

В итоге получим набор собственных векторов матрицы А {yk}: || yk ||=1, ортогональных друг другу, соответствующих собственным числам {λk}.

Обозначим матрицу собственных векторов как:

.

Получим систему: Y.

Очевидно, что У – ортогональная матрица, т.к. ее столбцы нормированны и ортогональны друг другу.

Тогда запишем систему в виде: YTAY=diag(λ1… λn) или A=Ydiag(λ1… λn)YT.

Геометрически это означает, что:

Всякая симметричная матрица может быть приведена к диагональному виду, т.е. в некотором базисе соответствующий оператор представляется диагональной матрицей, а значит его действие состоит в растягивании на величину λк соответствующего базисного вектора. Базис состоит из собственных векторов, т.е. диагональная матрица нетривиальна.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]