Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1ый семестр.doc
Скачиваний:
27
Добавлен:
17.08.2019
Размер:
1.03 Mб
Скачать

§6. Полиномиальная интерполяция с кратными узлами

Пусть дана дискретная функция f(х) в узлах х0, х1...хmkk+1, ). А также заданы значения в узлах для производных функции f(х):

; S=0, 1...Sk-1. Причем

Требуется построить многочлен Qn(х) n-ой степени, совпадающий в узлах со всеми этими значениями, т.е. получим систему:

Интерполяционный многочлен Qn(х) определяется единственным образом. Действительно, предположим, что существует многочлен n-ой степени:

удовлетворяет условиям вышеописанной системы. Тогда их разность удовлетворяет следующим условиям:

Т.е. точки х0...хm – нули многочлена Рn(х) кратности S0...Sm соответственно. Получено: многочлен Рn(х)≠0 степени n имеет n+1 нулей (из кратности). Отсюда, Рn(х)≡0. Противоречие доказывает требуемое.

Таким образом, линейная алгебраическая система невырождена, и её решение находится единственным образом.

Погрешность интерполяции.

Обозначим f(х):=Qn(х)+Rn(х).

Представим погрешность Rn в виде:

Отсюда, (1)

где S=0...Sk-1; φ(хk)=0; k=0, 1...m (т.е. хk – нули кратности S0...Sm соответственно).

Выберем k из условия φ(х')=0, где х' – точка, в которой оценивается погрешность

Из уравнения φ(х')=0 получим:

Будем предполагать, что Тогда при таком выборе К и обращается в ноль в (n+2) точках (считая кратность): х0...хm, х'.

Следовательно, по Т. Ролля φ'(х) обращается в ноль в по крайней мере (n+1) точке.

...........................................................................

Тогда, по Т. Ролля φ(n+1)(х) имеет хотя бы один нуль.

Т.е. существует g=g(х'): φ(n+1)(g)=0.

Из равенства (1) получим:

Отсюда,

Т.к. х' выбрано произвольно, то последнее равенство верно при

§7. Свойства разделенных разностей

Пусть задана дискретная функция f(х) в узлах х0...хnk < хk+1), а также её разделенная разность k-ого порядка:

Лемма: Справедливо равенство:

Доказательство(методом математической индукции):

При k=1:

Пусть верность равенства доказана при

Докажем для m-ого порядка:

Рассмотрим слагаемое для f(х1):

Аналогично для остальных слагаемых.

Что и требовалось доказать.

Числа αk. Пусть хii+1 при

Обозначим:

Данные числа обладают следующими свойствами:

1. - очевидно

2. Действительно, т.к.

1)

2) Умножим на (-1)n-i. Тогда знак числителя не зависит от i, значит знак каждого слагаемого такой же, отсюда, αi>0.

3.

Действительно:

Из ранее доказанной Леммы:

Что и требовалось доказать.

§8. Задача Чебышева. Разрешимость системы

Пусть f(х) задана дискретно в узлах х0...хn+1 значениями у0...уn+1 соответственно (хi<xi+1). Требуется построить многочлен Рn(x), наилучшим образом аппроксимирующий в узлах значения функции.

Задача Чебышева.

Обозначим:

Рn(x)=Pn(x,A), где А=(а0, а1...аn).

Необходимо определить μ=inf max |Pn(xk)-yk| и минимизирующий многочлен Pn(x,A), если он существует.

Задачи такого типа называют минимальными.

Предварительно рассмотрим систему:

В системе n+2 неизвестных: h, а0, а1...аn.

Докажем, что определитель системы Δ≠0.

Заметим, что:

а) sgn Δ0=sgn Δ1

Действительно, рассмотрим функцию q0(x):

- многочлен n-ого порядка с нулями

в х2, х3...хn+1

Отсюда, sgn q0(x0)=sgn q0(x1), т.к. точки промежутку знакопостоянства функции.

б) sgn Δ1 = sgn Δ2

Рассмотрим следующую функцию:

- многочлен n-ого порядка с нулями

в х0, х3...хn+1

Отсюда, sgn q1(x1)=sgn q1(x2). И т.д.

Таким образом, получим: Δ≠0, следовательно, решение системы существует. Обозначим его как Pn(x,A*).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]