Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Марков 4 курс.doc
Скачиваний:
52
Добавлен:
24.08.2019
Размер:
1.4 Mб
Скачать

Германий

Один из первых полупроводниковых материалов, атомный номер 32.

Применение:

- выпрямительные плоскостные диоды от 0.3 до 1000 А.

- транзисторы как мощные, так и маломощные.

- туннельные и СВЧ - диоды.

- варикапы (полупроводниковый диод с регулируемой емкостью).

- датчики Холла и другие магниточувствительные приборы.

Недостаток – рабочая температура не больше 60-700С. Из-за этого вытесняется Si и GаAs.

Получение. Ge – рассеянный элемент, не имеет своих месторождений. Основные источники Ge – побочные продукты цинкового производства, коксования углей, концентраты из Cu-Pb-Zn-руд. Сырье хлорируют. Получают GeCl4 (жидкость с tкип=830С), ее очищают экстракцией, ректификацией. Далее путем гидролиза переводят в GeO2:

GeCl4 + 2H2O = GeO2 + 4HCl

Далее восстанавливают H2 в электрических печах при 650-7000С в графитовых тиглях: GeO2 + 2H2 = Ge + 2H2O

Восстановление совмещают с плавлением и кристаллизацией.

Поликристаллические слитки подвергают зонной плавке для получения Ge особой чистоты, либо выращивают легированные монокристаллы методом вытягивания из расплава.

Физико-химические и электрические свойства германия

Имеет металлический блеск, характеризуется твердостью и хрупкостью. Тпл = 9360С, d = 5.3 г/см3. Структура алмаза с периодом 5.66 , ширина запрещенной зоны при 300 К 0.665 эВ.

При комнатной температуре химически стоек. При температуре больше 6500С окисляется до GeO2. GeO2 заметно растворяется в воде, из-за чего не может служить защитой поверхности Ge (в отличии от SiO2). Кристаллический Ge при комнатной температуре не растворим в воде, соляной кислоте, разбавленной серной кислоте. Растворяется в смеси HNO3+HF, смеси H2O2 и окислителей. При нагревании взаимодействует с галогенами и серой. До температуры плавления не взаимодействует с графитом и кварцем, поглощает H2 до .

Для температуры больше 200 К Прозрачен для излучения с > 1.8мкм.

В качестве доноров и акцепторов при легировании используют элементы V и III групп: As, Sb, Bi; Al, Ga, In. ионизации примесей 0.01 эВ. Элементы I,II,VI,VII,VIII групп создают более глубокие уровни в запрещенной зоне. В нормальных условиях концентрация носителей заряда в Ge определяется концентрацией примесей (уже для температуры больше 90 К).

Собственная электропроводность появляется при 500С при концентрации примеси равной 8*1019 м-3 и для 2000С при содержании 7*1021 м-3. Удельное сопротивление при 200С – 0.47 Ом*м, а в расплаве 6.5*10-7 Ом*м (близкое к жидким металлам).

Карбид кремния (SiC)

В природе встречаются очень редко. Следствием сильных ковалентных связей отличается высокой температурной и химической стойкостью и твердостью.

Получают в электрических печах по реакции восстановления кварцевого песка углеродом:

SiO2 + 3C = SiC + 2CO

До 20000С имеет кубическую - модификацию с а=4.359 .

При температуре больше 2600-2700 возгоняется. При получении образует друзы кристаллов, которые дробят до порошка и для получения полупроводниковой чистоты возгоняют в атмосфере аргона при Т = 2400-26000С. Образует до 100 политипов (различающихся наложением атомных слоев). В зависимости от политипа имеет ширину запрещенной зоны от 2.39 до 3.33 эВ. Фактически это группа полупроводниковых соединений одного химического состава. Управление политипизмом сложный процесс. Наиболее легко воспроизводится политип 6H ( ). В то же время химические механические свойства SiC слабо зависят политипа. Твердость – 9.5. Не окисляется до Т=14000С. При комнатной температуре не взаимодействует с кислотами. При нагревании взаимодействует с расплавами щелочей, H3PO4, HNO3+HF. Электропроводность примесная. От ее вида зависит окраска. Примеси P, As, Sb, Bi, Fe дают зеленую окраску, N, B-желтую и “n” –тип.Ca, Mg, B, Al, Ge, In - голубую и фиолетовую, и “p”- тип. Избыток Si дает “n”, избыток углерода -“p” тип. Собственная электропроводность при Т>14000С.

Замечательная особенность SiC – способность к люминесценции в видимой области. Изменяя политип и примеси можно получать излучение от красного до фиолетового. Это используется для создания светодиодов на принципе инжекционной электролюминесценции. Основой светодиодов является “р-n“ переход, формирующийся за счет диффузии примесей при 1800-20000С. Наиболее распространены желтые светодиоды (примеси В и N). Несмотря на невысокую эффективность преобразования энергии – не деградируют, очень стабильны (световые эталоны). Применяют также для изготовления мощных выпрямителей, тензорезисторов, полевых транзисторов, варисторов. Высокую твердость используют при получении образивных материалов.