Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции 2012, 1 вар.doc
Скачиваний:
6
Добавлен:
07.09.2019
Размер:
1.76 Mб
Скачать

Раздел 4. Электромагнетизм

Глава 5. Электростатика

§ 5.1.Электрический заряд. Закон Кулона.

Электрический заряд частицы является одной из основных, первичных ее характеристик. Перечислим фундаментальные свойства заряда:

  1. Знак - существуют положительные и отрицательные заряды.

  2. Квантование – заряд любой частицы (тела) равен целому числу элементарных зарядов. Величина элементарного заряда в единицах СИ составляет 1,6.1019 Кл; электрон имеет элементарный отрицательный заряд, протон - элементарный положительный заряд.

  3. Релятивистская инвариантность – величина заряда не зависит от скорости его движения и одинакова в любой инерциальной системе отсчета5.

  4. Закон сохранения заряда – в любой электрически изолированной (замкнутой) системе частиц алгебраическая сумма зарядов не изменяется.

  5. Закон Кулона выражает силу взаимодействия двух точечный зарядов.

(5.1.1)

Т очечным зарядом называется заряженная частица, к которой применима модель материальной точки. Рис. 16 иллюстрирует закон Кулона: показаны два точечных заряда на расстоянии и их силы взаимодействия. -вектор силы, действующей на второй заряд со стороны первого, - вектор, проведенный из точки, где находится первый заряд, в точку, где находится второй заряд. Модуль этого вектора равен расстоянию между зарядами: r= . Закон Кулона, как и закон всемирного тяготения, констатирует, что сила взаимодействия обратно пропорциональна квадрату расстояния между частицами. Однако, гравитационное взаимодействие всегда есть притяжение масс, тогда как взаимодействие зарядов есть отталкивание одноименных и притяжение разноименных зарядов. Это отражено в формуле (5.1.1): произведение одноименных зарядов дает положительное число, и векторы и направлены одинаково, заряды отталкиваются. Произведение разноименных зарядов дает отрицательное число, в этом случае векторы и направлены противоположно друг другу, а заряды притягиваются. В соответствии с третьим законом Ньютона F1=F2=F. В скалярной форме закон Кулона имеет вид:

F= (5.1.2)

0 электрическая постоянная, зависит от выбора системы единиц, в СИ 0=8,85.1012 Ф/м. - безразмерная величина, диэлектрическая постоянная, индивидуальная характеристика свойств диэлектрика. Она показывает, во сколько раз сила взаимодействия зарядов в диэлектрике меньше, чем в вакууме, при прочих равных условиях. В воздухе с достаточной степенью точности считают =1.

§5.2. Электрическое поле. Напряженность.

Взаимодействие частиц на расстоянии в физике описывают с помощью особого вида материи – силового поля. Примером является гравитационное поле: оно создается частицей, имеющей массу, и действует на другую частицу, помещенную в гравитационное поле и обладающую массой. Аналогичным образом можно рассматривать взаимодействие частиц, обладающих зарядами. Заряд изменяет свойства окружающего его пространства, создавая в нем электрическое поле. Обнаруживает себя это поле силой, действующей на другой заряд. Рассмотрим закон Кулона (формула 5.1.1). Будем считать, что первый заряд создает поле, и это поле действует на второй заряд, причем, зависит только от источника поля, и от положения точки поля относительно источника, т.е. является силовой характеристикой поля. Можно сказать, что поле первого заряда бдительно следит за появлением «чужака», и, как только он где-либо в поле появится, тут же действует на него соответствующей силой. Этот способ описания взаимодействия зарядов абсолютно симметричен: можно считать, что второй заряд создает поле, а это поле действует силой на первый заряд. Силовая характеристика электрического поля называется напряженностью, обозначается , в СИ измеряется в вольтах на метр (В/м). На посторонний заряд q поле действует силой

(5.2.1)

Поле, созданное неподвижными зарядами, называется электростатическим. Напряженность поля точечного заряда q в точке, заданной вектором , проведенным из заряда (см. формулу 5.1.1):

(5.2.2)

Вектор напряженности электростатического поля точечного заряда направлен вдоль прямой, соединяющей точку, где находится заряд, с данной точкой поля. Он выходит из точки поля и направлен от заряда, если источником поля является положительный заряд, и к заряду, если он отрицательный. Величина напряженности

E= (5.2.3)

Пусть имеется система точечных зарядов qi (i=1, 2, …). Поместим в некоторую точку системы, положение которой относительно каждого ее заряда указывает вектор , заряд q. На него со стороны каждого заряда системы действует кулоновская сила. Их равнодействующая:

(5.2.4)

Полученный результат называется принципом суперпозиции (независимого сложения) электрического поля: если имеется несколько источников, то каждый из них создает свое поле независимо от всех прочих, и эти поля, складываясь, дают результирующее поле6. Формула принципа суперпозиции такова:

(5.2.5)

Поле известно, если известен вектор напряженности в каждой точке. Электрическое поле можно изображать графически векторами напряженности. Этот способ удобен для изображения поля в отдельных точках. Если поле надо нарисовать в некоторой области пространства, то используют линии напряженности (их называют еще силовыми линиями). Касательная к силовой линии указывает направление в данной точке поля, густота (плотность) силовых линий вблизи этой точки равна или пропорциональна величине напряженности. Силовые линии электростатического поля выходят из положительного заряда и входят в отрицательный заряд.

На рис.17 показаны силовые линии поля положительного и отрицательного точечных зарядов, поля диполя, а также области некоторого электростатического поля - образующие его заряды находятся вне рассматриваемой области.

Рис. 17

Диполь – два точечных разноименных зарядов одинаковой величины. На рис.17 в одной из точек поля диполя показано построение вектора напряженности с помощью принципа суперпозиции. Силовые линии – воображаемые, но их можно сделать видимыми (вспомните лекционные демонстрации).