Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техническая механика 12.09.11.doc
Скачиваний:
62
Добавлен:
06.11.2018
Размер:
14.88 Mб
Скачать

3. Общие теоремы динамики точки.

3.1. Количество движения и кинетическая энергия точки.

Это основные динамические характеристики движения. Количеством движения точки называется векторная величина , равная произведению массы точки на вектор ее скорости . Направлен вектор так же, как и скорость точки, то есть по касательной к траектории.

Кинематической энергией (или живой силой) точки называется скалярная величина .

Единицы измерения:

а) в системе Си

б) в системе СГС

3.2. Импульс силы.

Для характеристики действия, оказываемого на тело силой за некоторый промежуток времени, вводим понятия об импульсе силы.

Элементарным импульсом силы называется векторная величина , равная произведению вектора силы на элементарный промежуток времени .

(13)

Направлен элементарный импульс по линии действия силы. Импульс любой силы за конечный промежуток времени вычисляется как интегральная сумма

(14)

Следовательно, импульс силы за любой промежуток времени равен определенному интегралу от элементарного импульса, взятому в пределах от нуля до . Проекции импульса силы на оси координат определяются:

(15)

3.3. Теорема об изменении количества движения точки.

Так как масса точки постоянна, а ее ускорение , то уравнение (3) (), выражающий основной закон динамики, можно представить в виде:

(16)

Уравнение (16) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна геометрической сумме действующих на точку сил. Проинтегрируем это уравнение.

Пусть точка массы m, движущая под действием силы имеет в момент t=0 скорость V0, а в момент t1 – скорость V1. Умножим обе части равенства (16) на и возьмем от них интегралы. При этом при интегрировании справа пределами будут 0 и t; а слева, где интегрируется, пределами интеграла будет соответствующие значения скорости V0 и

Рис. 3.3

V1. В результате получим:

.

Согласно формуле (14) окончательно имеем:

(17)

Уравнение (17) выражает теорему об изменении количества движения точки: изменение количества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех действующих на точку сил за тот промежуток времени.

При решении задач вместо векторного уравнения (17) часто пользуются уравнениями в проекциях

(18)