Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы по ТАУ.doc
Скачиваний:
88
Добавлен:
16.04.2019
Размер:
12.72 Mб
Скачать

На переходный процесс в сау

2. Комплексные корни. Бывают попарно сопряженными. При отрицательной вещественной части слагаемые, определяемые этими корнями в уравнении (4.2) могут быть представлены в виде

, (4.4)

где A и φ – новые постоянные интегрирования, ω – круговая частота затухающих колебаний, α – показатель затухания, определяющий затухание огибающей к кривой переходного процесса (рис. 4.4,б).

При положительной вещественной части колебания будут расходящимися (рис. 4.5,в).

3. Чисто мнимые корни. В этом случае

.

Слагаемое, определяемое этими корнями в (4.2), будет представлять собой незатухающие колебания, т.е.

. (4.5)

Такой процесс изображен на рис. 4.5, г).

Следовательно, для затухания переходного процесса (т.е. для устойчивости САУ) необходимо, чтобы вещественные части корней и вещественные корни были отрицательными.

Корни характеристического уравнения можно представить в виде точек на комплексной плоскости величины S (рис. 4.6).

I maginaire (фр.) - мнимый

Reel (фр.) -действительный

Рис. 4.6. Плоскость корней характеристического уравнения

Для устойчивости линейной системы необходимо и достаточно, чтобы все корни лежали слева от мнимой оси плоскости корней. Вся левая полуплоскость представляет собой область устойчивости. Мнимая ось ω плоскости корней является границей устойчивости системы. Выделяют три типа границ устойчивости, которые характеризуются соответственно:

1) нулевым корнем S1=0;

2) парой чисто мнимых корней S1,2= ;

3) бесконечно удаленным корнем S1=;

В первом случае граница устойчивости называется апериодической. Это означает, что в характеристическом уравнении (4.3) отсутствует свободный член an=0. Дифференциальное уравнение (4.1) в этом случае может быть записано в виде

.

Система будет устойчивой относительно скорости изменения py(t), а отклонение регулируемой величины y(t) может принимать произвольные значения. Систему называют нейтрально устойчивой.

Во втором случае имеем колебательную границу устойчивости. Система имеет незатухающие гармонические колебания с постоянной амплитудой (4.5,г).

В третьем случае вещественный корень может попасть из левой полуплоскости в правую проходя через бесконечность. В этом случае слагаемое в выражении (4.2) обращается в нуль. Это соответствует понижению порядка дифференциального уравнения на единицу. В этом случае а0=0.

Граница устойчивости третьего типа встречается редко.

24. Критерий устойчивости Гурвица. Характеристическое уравнение (1, 2, 3, 4 порядков).

Вычисление корней характеристического уравнения высокой степени не всегда удобно. Поэтому были выведены критерии устойчивости, позволяющие судить об устойчивости САР непосредственно по коэффициентам характеристического уравнения. В ТАУ наибольшее применение из алгебраических критериев устойчивости получили критерий Рауса и критерий Гурвица.

Предварительно покажем, что необходимым (но не достаточным) условием устойчивости системы является положительность всех коэффициентов характеристического уравнения.

(4.6)

Если же есть хотя бы один отрицательный коэффициент, то САУ наверняка неустойчива. Действительно, в соответствии с теоремой Безу, уравнение (4.6) можно представить в виде произведения множителей, содержащих корни , , … , характеристического уравнения

. (4.7)

Коэффициент всегда можно сделать положительным.

Пусть все вещественные корни уравнения (4.6) отрицательные, а комплексные корни имеют отрицательные вещественные части (они всегда попарно сопряженные)

, , … , .

Подставив их в уравнение, получим

.

Средние два сомножителя дают и после перемножения всех скобок получим в уравнении только положительные коэффициенты. Это и требовалось доказать.

Необходимое условие устойчивости становится и достаточным для уравнения первой и второй степени. В этом легко убедится прямым нахождением корней:

1) , ;

2) , .

Для уравнений третьей и выше степеней это условие лишь необходимо, но недостаточно, ибо оно обеспечивает отрицательность только вещественных корней. Комплексные корни могут иметь положительные вещественные части.

Критерий устойчивости Гурвица.

Немецким математиком А. Гурвицем был разработан алгебраический критерий устойчивости в форме определителей, составленных из коэффициентов характеристического уравнения системы.

Из коэффициентов характеристического уравнения (4.6) составляют сначала главный определитель Гурвица

(4.8)

по следующему правилу: по главной диагонали определителя от верхнего левого угла выписывают по порядку все коэффициенты, начиная с и заканчивая . Затем каждый столбец определителя дополняют так, что бы вверх от диагонали индексы коэффициентов увеличивались, вниз – уменьшались. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексом меньше 0 и больше n пишут нуль.

Отчеркивая в главном определителе Гурвица, как показано пунктиром, диагональные миноры, получаем определители Гурвица низшего порядка.

Критерий Гурвица формулируется так:

система автоматического управления устойчива, если при положительны все определителей Гурвица, получаемых из (4.8), т.е.

; , ; ; … ,

. (4.9)

Это необходимое и достаточное условие устойчивости.

Предпоследнее неравенство в (4.9) есть , поэтому последнее неравенство сводится к .

Система находится на границе устойчивости, если и все предыдущие определители Гурвица положительны. Условие распадается на два: или . В первом случае система находится на границе апериодической устойчивости (нейтральная устойчивость) (один из корней характеристического уравнения равен нулю); во втором случае – на колебательной границе устойчивости (два сопряженных мнимых корня).

Наконец, граница устойчивости, соответствующая бесконечному корню, будет, согласно уравнению (4.6) при . В самом деле, если все слагаемые в уравнении (4.6) разделить на , то получим

.

Отсюда видно, что при имеем , а значит .

Раскрывая определители Гурвица для характеристических уравнений первого, второго, третьего и четвертого порядков, можно получить следующие условия устойчивости:

  1. для уравнения первого порядка

, условия устойчивости , ; (4.10)

  1. для уравнения второго порядка

,

условия устойчивости

, , , т.е. ; (4.11)

  1. для уравнения третьего порядка

,

, (4.12)

условия устойчивости , , , .

С учетом того, что и коэффициент . Из следует при положительности всех коэффициентов;

4) для уравнения четвертого порядка

,

, (4.13)

условия устойчивости

, , , ; (4.14)

; ;

Преобразуем

. (4.15)

Таким образом, для уравнений третьего и четвертого порядков, кроме положительности коэффициентов, необходимо соблюдение дополнительных неравенств (4.12) и (4.14).

Для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Для уравнений высоких порядков ( ) в лучшем случае можно получить ответ о том, устойчива или неустойчива САУ. В случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменять параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы более удобными в инженерной практике.