Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ 2.2 электродин вм ас Лек.doc
Скачиваний:
49
Добавлен:
21.04.2019
Размер:
9.81 Mб
Скачать

6.5. Магнитное поле прямого тока

Рассмотрим магнитное поле, создаваемое электрическим током, теку­щим по тонкому бесконечно длинному проводу. Такая система обладает цилиндрической симметрией. Вследствие этого магнитное поле должно обладать следующими свойствами:

1) на любой прямой, параллельной проводу с током, вектор магнитной индукции должен быть всюду оди­наков;

2) при повороте всего магнитного поля целиком вокруг провода оно не изменяется. В таком случае силовыми линиями магнитного поля должны быть окружности, центры которых лежат на оси провода с то­ком (рис, 6.7), а вектор В на любой из этих окружностей всюду имеет один и тот же модуль.

При помощи теоремы (6.8) о циркуляции вектора магнитной индук­ции найдем модуль этого вектора. С этой целью вычислим циркуляцию магнитной индукции по одной из силовых линий С, радиус которой ра­вен а. Так как вектор В является касательным к силовой линии, он коллинеарен векторному элементу dl этой линии. Поэтому

=

где В - модуль вектора магнитной индукции, который, как было сказано, всюду на окружности С один и тот же. Вынесем В за знак интеграла. После интегрирования будем иметь

= В 2 a

Рис. 6.7. Силовые линии магнитного поля прямого токи

Так как контур С охватывает всего один провод с током I, теорема (6.8) приводит к равенству

2 a В = μoI

Отсюда найдем, что на расстоянии а от бесконечного прямого провода с током I индукция создаваемого им магнитного поля будет

В = μoI/(2 a) (6.15)

Как видно из рис. 6.7, направление вектора В и направление тока I связаны правилом правого винта. В том, что это действительно так, нетрудно убедиться при помощи закона Био - Савара - Лапласа.

6.6. Взаимодействие токов

Рассмотрим два тонких параллельных друг другу прямых провода с токами I1 и I2 (рис. 6.8.). Если расстояние R между проводами много меньше их длины, то магнитную индукцию поля, создаваемого первым проводом на этом расстоянии, можно найти по формуле (6.15):

В = μoI1/(2 R)

Н аправление вектора В1 связано с направлением тока I1 правилом пра­вого винта. Этот вектор изображен на рис. 6.8.

Рис. 6.8. Взаимодействие токов

Магнитное поле, создаваемое первым током, будет действовать на вто­рой провод с силой Ампера F21, которая определяется формулой (5.8):

(6.17)

F21 = I2 [l2B1]

где l2 - вектор, длина которого равна длина l рассматриваемого участка второго провода. Этот вектор направлен вдоль провода по направлению тока. Модуль силы (6.17) будет

F21 = I2 l B1. (6.18)

Подставив выражение (6.16) в формулу (6.18), получим следующее выра­жение для силы, с которой первый провод действует на участок второго провода длины l:

F21 = μoI1 I2 l /(2 R)

Направление силы F21 найдем по формуле (6.17). Когда токи I1, I2 текут в одном направлении эта сила будет направлена в сторону первого провода. Сила F12, с которой второй провод действует на участок первого провода длины l, равна по модулю и противоположна по направлению силе F21 .

Итак, установлено, что параллельные провода с токами, текущими в одном направлении, притягиваются. Нетрудно доказать, что провода с токами, текущими в противоположных направлениях, отталкиваются друг от друга.

При помощи формулы (6.19) определена единица силы тока в СИ. Как известно, эта единица называется ампер. По определению два длинных тонких провода с токами силой в один ампер, расположенные парал­лельно на расстоянии 1 м один от другого, взаимодействуют с силой 2 • 10-7 Н на 1 м длины. Подставив эти значения в формулу (6.19), найдем, что магнитная постоянная

0 = 4 10-7 Н/м.

Единица заряда в СИ - кулон - выражается через единицу силы тока: Кл = А*с. Измерения силы взаимодействия двух точечных зарядов в 1 Кл привели к значению F = 9 • 109 Н при расстоянии между зарядами R = 1 м. Используя эти значения, найдем электрическую постоянную 0 из закона Кулона

F =|Q1Q2|/(40R2)

Интересно отметить, что величина

1/00 =3 108 м/с

численно равна скорости света в пустоте.

Гл 6. Постоянное магнитное поле в вакууме