Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Medical Image Processing.pdf
Скачиваний:
26
Добавлен:
11.05.2015
Размер:
6.14 Mб
Скачать

13 Medical Image Volumetric Visualization: Algorithms, Pipelines...

311

on 3DTM. In this algorithm, the volume was partitioned into transparent and nontransparent regions, axis aligned bounding boxes were used to enclose the nontransparent ones, and an octree was used to encode these boxes for efficient empty space skipping. In addition, Keles et al. [111] exploited the slab silhouette maps (SSMs) and the early depth test to skip empty spaces along the direction normal to the texture slice.

13.8 Discussion and Outlook

DVR is an efficient technique to explore complex anatomical structures within volumetric medical data. Real-time DVR of clinical datasets needs efficient data structures, algorithms, parallelization, and hardware acceleration. The progress of programmable GPUs has dramatically accelerated the performance and medical applications of volume visualization, and opened a new door for future developments of real-time 3D and 4D rendering techniques. For DVR algorithms such as splatting, shell rendering, and shear-warp, and hardware accelerations have been proposed and implemented; however, most of these improvements are based on fixed graphics pipelines, and do not take full advantages of the programmable features of GPU. As mentioned previously, even if the TM-based DVR algorithms make use of graphics hardware in the volume-rendering pipeline, they differ considerably from the programmable GPU algorithms, such as raycasting, in that all of the volume rendering computations and corresponding acceleration techniques are implemented on the GPU fragment shaders. The TM-based DVR algorithms only use fixed graphics pipelines that include relative simple texture operations, such as texture extraction, blending, and interpolation.

In addition, to further enhance the visualization environment, DVR algorithms should be effectively combined with realistic haptic (i.e., force) feedback and crucial diagnostic and functional information extracted from medical data using new algorithms in the research fields such as machine learning and pattern recognition. Furthermore, innovative techniques of robotics, human–computer interaction, and computational vision must be developed to facilitate medical image exploration, interpretation, processing, and analysis.

Finally, we note that the current volume visualization algorithms should be integrated into standard graphical and imaging processing frameworks such as the Insight Segmentation and Registration Toolkit (ITK) [112] and the Visualization ToolKit (VTK) [113], enabling them to be used readily in clinical medical imaging applications. We also note that even though there have been many efficient and advanced techniques developed for all parts of the volume rendering pipeline, only a few simple ones have been developed for clinical visualization. The translation of these advances into clinical practice, nevertheless, remains a problem. However, we must ensure that such challenges are addressed so as not to introduce roadblocks with respect to related technologies as image-guided interventions.

312

Q. Zhang et al.

Acknowledgments The authors thank the following people for allowing us to use their images as sample images: Marjo Gotte,¨ Novartis Institutes for BioMedical Research; Dr. Myles Fennell, Wyeth Research, Princeton, NJ, USA; Dr. Xiaokui Zhang, Helicon Therapeutics, Inc., USA; Prof. Pat Doherty, Kings College, London, UK; Dr. Jenny Gunnersen, Prof. Seong-Seng Tan, and Dr. Ross O’Shea Howard Florey Institute, Melbourne; Prof. Cynthia Whitchurch, UTS, Sydney.

References

1.Baek, S.Y., Sheafor, D.H., Keogan, M.T., DeLong, D.M., Nelson,R.C.: Two-dimensional multiplanar and three-dimensional volume-rendered vascular CT in pancreatic carcinoma: Interobserver agreement and comparison with standard helical techniques. Am. J. Roentgenol. 176(6), 1467–1473 (2001)

2.Shekhar, R., Zagrodsky, V.: Cine MPR: interactive multiplanar reformatting of fourdimensional cardiac data using hardware-accelerated texture mapping. IEEE Trans. Inf. Technol. Biomed. 7(4), 384–393 (2003)

3.Tatarchuk, N., Shopf, J., DeCoro, C.: Advanced interactive medical visualization on the GPU. J. Parallel Distrib. Comput. 68(10), 1319–1328 (2008)

4.Buchart, C., Borro, D., Amundarain, A.: GPU local triangulation: an interpolating surface reconstruction algorithm. Comput. Graph. Forum 27(3), 807–814 (2008)

5.Hadwiger, M., Sigg, C., Scharsach, H., Buhler, K., Gross, M., Realtime ray-casting and advanced shading of discrete isosurfaces. Comput. Graph. Forum 24(3), 303–312 (2005)

6.Hirano, M., Itoh, T., Shirayama, S.: Numerical visualization by rapid isosurface extractions using 3D span spaces, J. Vis. 11(3), 189–196 (2008)

7.Petrik, S., Skala, V.: Technical section: space and time efficient isosurface extraction, Comput. Graph. 32(6), 704–710 (2008)

8.Kim, S., Choi, B., Kim, S., Lee, J.: Three-dimensional imaging for hepatobiliary and pancreatic diseases: emphasis on clinical utility. Indian J. Radiol. Imaging 19, 7–15 (2009)

9.Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics, 1st edn. A. K. Peters, Ltd., Natick (2006)

10.Schellinger, P.D., Richter, G., Kohrmann, M., Dorfler, A.: Noninvasive angiography magnetic resonance and computed tomography diagnosis of ischemic cerebrovascular disease. Cerebrovasc. Dis. 24(1), 16–23 (2007)

11.Park, S.H., Choi, E.K., et al.: Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 246, 157–167 (2008)

12.Schellinger, P.D., Richter, G., Kohrmann, M., Dorfler, A.: Noninvasive angiography magnetic resonance and computed tomography in the diagnosis of ischemic cerebrovascular disease. Cerebrovasc. Dis. 24(1), 16–23 (2007)

13.Park, S.H., Choi, E.K., et al.: Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 246, 157–167 (2008)

14.Drebin, R., Carpenter, L., Hanrahan, P.: Volume rendering. In: Proceedings SIGGRAPH88, pp 65–74 (1988)

15.Johnson, C., Hansen, C.: Visualization Handbook. Academic, Orlando (2004)

16.Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics, 1st edn. A. K. Peters, Natick (2006)

17.Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

18.Hohne,¨ K.H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U.: Wiebecke G: 3D visualization of tomographic volume data using the generalized voxel model. Vis. Comput. 6(1), 28–36 (1990)

13 Medical Image Volumetric Visualization: Algorithms, Pipelines...

313

19.Kr¨uger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Comp Society, Washington, DC, pp. 287–292 (2003)

20.Westover, L.: Interactive volume rendering. In; Proc. of the 1989 Chapel Hill Workshop on Volume visualization, ACM, pp. 9–16

21.Westover, L.: Footprint evaluation for volume rendering. In: SIGGRAPH’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, ACM, pp. 367–376 (1990)

22.Udupa, J.K., Odhner, D.: Shell rendering. IEEE Comput. Graph. Appl. 13(6), 58–67 (1993)

23.Gelder, A.V., Kim, K.: Direct volume rendering with shading via three-dimensional textures. In: Proc. of the 1996 Symposium on Volume Visualization. IEEE, pp. 23–30 (1996)

24.Marroquim, R., Maximo, A., Farias, R.C., Esperanc¸a, C.: Volume and isosurface rendering with GPU accelerated cell projection. Comput. Graph. Forum 27(1), 24–35 (2008)

25.Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. Comput. Graph. 28(Annual Conference Series), 451–458 (1994)

26.Mroz, L., Hauser, H., Gr¨oller, E.: Interactive high-quality maximum intensity projection. Comput. Graph. Forum 19(3), 341–350 (2000)

27.Robb, R.: X-ray computed tomography: from basic principles to applications. Annu. Rev. Biophys. Bioeng. 11, 177–182 (1982)

28.Ahmetoglu, A., Kosucu, P., Kul, S., et al.: MDCT cholangiography with volume rendering for the assessment of patients with biliary obstruction. Am. J. Roentgenol. 183, 1327–1332 (2004)

29.Fishman, E.K., Horton, K.M., Johnson, P.T.: Multidetector CT and three-dimensional CT angiography for suspected vascular trauma of the extremities. Radiographics 28, 653–665 (2008)

30.Singh, A.K., Sahani, D.V., Blake, M.A., Joshi, M.C., Wargo, J.A., del Castillo, C.F.: Assessment of pancreatic tumor respectability with multidetector computed tomography: semiautomated console-generated versus dedicated workstation-generated images. Acad. Radiol. 15(8), 1058–1068 (2008)

31.Fishman, E.K., Ney, D.R., et al.: Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26, 905–922 (2006)

32.Gill, R.R., Poh, A.C., Camp, P.C., et al.: MDCT evaluation of central airway and vascular complications of lung transplantation. Am. J. Roentgenol. 191, 1046–1056 (2008)

33.Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. Comput. Graph. 16(3), 21–29 (1982)

34.Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

35.Rezk-Salama, C.: Volume Rendering Techniques for General Purpose Graphics Hardware. Ph.D. thesis, University of Siegen, Germany, 2001

36.Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Eurographics/SIGGRAPH Workshop on Graphics Hardware’01, Annual Conf Series, pp. 9–16. Addison-Wesley, Boston (2001)

37.Kraus, M.: Direct Volume Visualization of Geometrically Unpleasant Meshes. Ph.D. thesis, Universit¨at Stuttgart, Germany, 2003

38.Kraus, M., Ertl, T.: Pre-integrated volume rendering. In: Hansen, C., Johnson, C. (eds.) The Visualization Handbook, pp. 211–228. Academic, Englewood Cliffs, NY (2004)

39.Rottger,¨ S., Kraus, M., Ertl, T.: Hardware-accelerated volume and isosurface rendering based on cell-projection. In: VIS’00: Proc. Conf. on Visualization’00, pp. 109–116. IEEE Computer Society, Los Alamitos (2000)

40.Max, N., Hanrahan, P., Crawfis, R.: Area and volume coherence for efficient visualization of 3D scalar functions. SIGGRAPH Comput. Graph. 24(5), 27–33 (1990)

41.Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware-accelerated volume rendering. In: Proc. of the Symp. on Data Visualisation 2003, pp. 231–238. Eurographics Assoc (2003)

314

Q. Zhang et al.

42.Zhang, Q., Eagleson, R., Peters, T.M.: Rapid voxel classification methodology for interactive 3D medical image visualization. In: MICCAI (2), pp. 86–93 (2007)

43.Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures volume rendering. IEEE Trans. Vis. Comp. Graph. 6 (2000)

44.Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)

45.Kniss, J., Kindlmann, G.L., Hansen, C.D.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)

46.Higuera, F.V., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance volume splatting for visualization of neurovascular data. In: IEEE Visualization, p. 35 (2005)

47.Abell´an, P., Tost, D.: Multimodal volume rendering with 3D textures. Comput. Graph. 32(4), 412–419 (2008)

48.Hadwiger, M., Laura, F., Rezk-Salama, C., Hollt,¨ T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)

49.Petersch, B., Hadwiger, M., Hauser, H., Honigmann,¨ D.: Real time computation and temporal coherence of opacity transfer functions for direct volume rendering. Comput. Med. Imaging Graph. 29(1), 53–63 (2005)

50.Rezk-Salama, C., Keller, M., Kohlmann, P.: High-level user interfaces for transfer function design with semantics. IEEE Trans. Vis. Comput. Graph. 12(5), 1021–1028 (2006)

51.Rautek, P., Bruckner, S., Gr¨oller, E.: Semantic layers for illustrative volume rendering. IEEE Trans. Vis. Comput. Graph. 13(6), 1336 (2007)

52.Freiman, M., Joskowicz, L., Lischinski, D., Sosna, J.: A feature-based transfer function for liver visualization. CARS 2(1), 125–126 (2007)

53.Robb, R.: X-ray computed tomography: from basic principles to applications. Annu. Rev. Biophys. Bioeng. 11, 177–182 (1982)

54.Mroz, L., Hauser, H., Gr¨oller, E., Interactive high-quality maximum intensity projection. Comput. Graph. Forum 19(3) (2000)

55.Mora, B., Ebert, D.S.: Low-complexity maximum intensity projection. ACM Trans. Graph. 24(4), 1392–1416 (2005)

56.Hoang, J.K., Martinez, S., Hurwitz, L.M.: MDCT angiography of thoracic aorta endovascular stent-grafts: pearls and pitfalls, Am. J. Roentgenol. 192, 515–524 (2009)

57.Kiefer, G., Lehmann, H., Weese, J.: Fast maximum intensity projections of large medical data sets by exploiting hierarchical memory architectures. IEEE Trans. Inf. Technol. Biomed. 10(2), 385–394 (2006)

58.Kye, H., Jeong, D.: Accelerated MIP based on GPU using block clipping and occlusion query. Comput. Graph. 32(3), 283–292 (2008)

59.Rubin, G.D., Rofsky, N.M.: CT and MR Angiography: Comprehensive Vascular Assessment. Lippincott Williams & Wilkins, Philadelphia (2008)

60.Kautz, J.: Hardware lighting and shading: a survey. Comput. Graph. Forum 23(1), 85–112 (2004)

61.Kniss, J., Premoze, S., Hansen, C.D., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

62.Weiskopf, D., Engel, K., Ertl, T.: Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Trans. Vis. Comput. Graph. 9(3), 298–312 (2003)

63.Rheingans, P., Ebert, D.: Volume illustration: nonphotorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph. 7(3), 253–264 (2001)

64.Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: SIGGRAPH’94: Proc. of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–100. ACM, New York (1994)

13 Medical Image Volumetric Visualization: Algorithms, Pipelines...

315

65.Lum, E.B., Ma, K.-L.: Hardware-accelerated parallel nonphotorealistic volume rendering. In: NPAR’02: Proc. of the 2nd International Symposium on Non-Photorealistic Animation and Rendering, pp. 67–ff. ACM, New York (2002)

66.Lum, E.B., Wilson, B., Ma, K.-L.: High-quality lighting for preintegrated volume rendering: In: Deussen, O., Hansen, C.D., Keim, D.A., Saupe, D. (eds.) VisSym, Eurographics, pp. 25–34 (2004)

67.Chan, M.-Y., Qu, H., Chung, K.-K., Mak, W.-H., Wu, Y.: Relationaware volume exploration pipeline. IEEE Trans. Vis. Comput. Graph. 14(6), 1683–1690 (2008)

68.Rautek, P., Bruckner, S., Groller, E., Viola, I.: Illustrative visualization: new technology or useless tautology? SIGGRAPH 42(3), 1–8 (2008)

69.Preim, B., Bartz, D.: Visualization in Medicine: Theory, Algorithms, and Applications (The Morgan Kaufmann Series in Computer Graphics), 1st edn. Morgan Kaufmann, San Francisco, CA (2007)

70.Sakas, G., Schreyer, L.-A., Grimm, M.: Preprocessing and volume rendering of 3D ultrasonic data. IEEE Comput. Graph. Appl. 15(4), 47–54 (1995)

71.KH Hohne, M., Bomans, A., Pommert, M., Riemer, C., Schiers, U., Tiede, G.: Wiebecke, 3D visualization of tomographic volume data using generalized voxel model. Vis. Comput. 6(1), 28–36 (1990)

72.Tiede, U., Schiemann, T., Hohne, K.H.: Visualizing the visible human. IEEE Comput. Graph. Appl. 16(1), 7–9 (1996)

73.Westover, L.: Interactive volume rendering. In: Proc 1989 Chapel Hill Workshop on Volume Visualization, pp. 9–16. ACM, New York (1989)

74.Westover, L.: Footprint evaluation for volume rendering. In: SIGGRAPH’90: Proc. of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 367–376. ACM, New York (1990)

75.Westover, L.: Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm. PhD Thesis, Univ North Carolina, 1991

76.Lee, R.K., Ihm, I.: On enhancing the speed of splatting using both objectand image-space coherence. Graph. Models 62(4), 263–282 (2000)

77.Meißner, M., Huang, J., Bartz, D., Mueller, K., Crawfis, R.: A practical evaluation of popular volume rendering algorithms. In: VVS’00: Proc. of the 2000 IEEE Symposium on Volume Visualization, pp. 81–90. ACM, New York (2000)

78.Higuera, F.V., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance volume splatting for visualization of neurovascular data. In: IEEE Visualization, p. 35 (2005)

79.Birkfellner, W., et al.: Fast DRR splat rendering using common consumer graphics hardware. Phys. Med. Biol. 50(9), N73–N84 2005

80.Spoerk, J., Bergmann, H., Wanschitz, F., Dong, S., Birkfellner, W., Fast DRR splat rendering using common consumer graphics hardware. Med. Phys. 34(11), 4302–4308 (2007)

81.Audigier, R., Lotufo, R., Falcao, A.: 3D visualization to assist iterative object definition from medical images. Comput. Med. Imaging Graph. 4(20), 217–230 (2006)

82.Mueller, K., Shareef, N., Huang, J., Crawfis, R.: High-quality splatting on rectilinear grids with efficient culling of occluded voxels. IEEE Trans. Vis. Comput. Graph. 5(2), 116–134 (1999)

83.Neophytou, N., Mueller, K.: Gpu accelerated image aligned splatting. In: Kaufman, A.E., Mueller, K., Groller, E., Fellner, D.W., Moller, T., Spencer, S.N. (eds.) Volume Graphics. Eurographics Assoc, pp. 197–205 (2005)

84.Udupa, J.K., Odhner, D.: Shell rendering: IEEE Comput. Graph. Appl. 13(6), 58–67 (1993)

85.Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: Artery-vein separation via MRA – an image processing approach. IEEE Trans. Med. Imaging 20(8), 689–703 (2001)

86.Bullitt, E., Aylward, S.: Volume rendering of segmented image objects. IEEE Trans. Med. Imaging 21(8), 998–1002 (2002)

87.Falcao, A.X., Rocha, L.M., Udupa, J.K.: A comparative analysis of shell rendering and shear-warp rendering. In: Proc. of SPIE Med. Imaging, vol. 4681, pp. 472–482. San Diego, CA (2002)

316

Q. Zhang et al.

88.Botha, C.P., Post, F.H.: Shellsplatting: interactive rendering of anisotropic volumes. In: Proc. of the Symposium on Data Visualisation 2003, pp. 105–112. Eurographics Association (2003)

89.Grevera, G.J., Udupa, J.K., Odhner, D.: T-shell rendering and manipulation. In: Proc. of SPIE Med. Imaging, vol. 5744, pp. 22–33. San Diego, CA (2005)

90.Cullip, T.J., Neumann, U.: Accelerating Volume Reconstruction with 3D Texture Hardware. Technical report, Univ North Carolina Chapel Hill, 1994

91.Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. of the 1994 Symposium on Volume Visualization, pp. 91–98. ACM, New York (1994)

92.Lamar, E.C., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. IEEE Vis., 355–362 (1999)

93.Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Vis. Comput. Graph. 6(2), 160–180 (2000)

94.Hauser, H., Mroz, L., Bischi, G.I., Groller, E.: Two-level volume rendering. IEEE Trans. Vis. Comput. Graph. 7(3), 242–252 (2001)

95.Hadwiger, M., Berger, C., Hauser, H.: High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 40. IEEE Computer Society, Washington, DC (2003)

96.Holmes, D., Davis, B., Bruce, C., Robb, R.: 3D visualization, analysis, and treatment of the prostate using trans-urethral ultrasound. Comput. Med. Imaging Graph. 27(5), 339–349 (2003)

97.Etlik, O¨., Temizoz, O., Dogan, A., Kayan, M., Arslan, H., Unal, O.: Three-dimensional volume rendering imaging in detection of bone fractures. Eur. J. Gen. Med. 1(4), 48–52 (2004)

98.Wenger, A., Keefe, D.F., Zhang, S., Laidlaw, D.H.: Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE Trans. Vis. Comput. Graph. 10(6), 664–672 (2004)

99.Wang, A., Narayan, G., Kao, D., Liang, D.: An evaluation of using real-time volumetric display of 3D ultrasound data for intracardiac catheter manipulation tasks. Comput. Med. Imaging Graph. 41–45 (2005)

100.Sharp, R., Adams, J., Machiraju, R., Lee, R., Crane, R.: Physics-based subsurface visualization of human tissue. IEEE Trans. Vis. Comput. Graph. 13(3), 620–629 (2007)

101.Lopera, J.E., et al.: Multidetector CT angiography of infrainguinal arterial bypass. RadioGraphics 28, 529–548 (2008)

102.Levin, D., Aladl, U., Germano, G., Slomka, P.: Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware. Comput. Med. Imaging Graph. 29(6), 463–475 (2005)

103.Lehmann, H., Ecabert, O., Geller, D., Kiefer, G., Weese, J.: Visualizing the beating heart: interactive direct volume rendering of high-resolution CT time series using standard pc hardware. In: Proc. of SPIE Med. Imaging, vol. 6141, pp. 614109–1–12. San Diego, CA (2006)

104.Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H., Volvis, H.D.R.: High dynamic range volume visualization. IEEE Trans. Vis. Comput. Graph. 12(4), 433–445 (2006)

105.Correa, C.D., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1069–1076 (2006)

106.Abellan, P., Tost, D.: Multimodal volume rendering with 3D textures. Comput. Graph. 32(4), 412–419 (2008)

107.Li, W., Kaufman, A.: Accelerating volume rendering with texture hulls. In: IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics, pp. 115–122 (2002)

108.Li, W., Kaufman, A.E.: Texture partitioning and packing for accelerating texture-based volume rendering. In: Graphics Interface, p. 81–88 (2003)

109.Li, W., Mueller, K., Kaufman, A.: Empty space skipping and occlusion clipping for texture-based volume rendering. IEEE Vis. 317–324 (2003)

110.Bethune, C., Stewart, A.J.: Adaptive slice geometry for hardware-assisted volume rendering. J. Graph. Tools 10(1), 55–70 (2005)

13 Medical Image Volumetric Visualization: Algorithms, Pipelines...

317

111.Keles, H.Y., Isler, V.: Acceleration of direct volume rendering with programmable graphics hardware. Vis. Comput. 23(1), 15–24 (2007)

112.Ibanez, L., Schroeder, W., Ng, L., Cates, J., the Insight Software Consortium: The ITK Software Guide, 2nd edn. updated for itk v2.4 Nov 2005

113.Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 3rd edn. Kitware Inc., Clifton Park, (2004)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]