Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТОК Лекции.doc
Скачиваний:
376
Добавлен:
07.06.2015
Размер:
7.27 Mб
Скачать
        1. Частотная манипуляция.

 При манипуляции видеоимпульсами (см. рис. 5.3, а) частота переносчика принимает только два значения (см. рис. 5.3, г). Спектр частот представлен на рис. 5.4, д.

Ширина полосы частот канала связи при передаче определяется допустимым временем установления сигнала на выходе входного фильтра приемника и девиацией частоты (частоты f1 согласно рис. 5.3, г, на котором переходный процесс установления частоты не показан). Однако искажения, вносимые входным фильтром при ЧМ, несколько больше, чем при АМ. Поэтому для частотной манипуляции, считая, что ΔF/(2Fдев) =1,4, имеем:

ΔFч min=(1,7 ÷3)/τ. (5.13)

        1. Реализация частотной модуляции.

Существуют прямые и косвенные методы реализации частотной модуляции. При прямых методах частотная модуляция осуществляется непосредственным изменением частоты задающего генератора. Наиболее распространенным косвенным методом является использование фазового модулятора для изменения фазы колебаний по закону частотной модуляции.

При прямых методах частота генератора изменяется путем изменения индуктивности катушки или емкости конденсатора, подключаемых параллельно катушке или конденсатору колебательного контура генератора. Прямые методы, несмотря на простоту, не могут обеспечить достаточной стабильности частоты генератора. Поэтому в модуляторах, основанных на этом принципе, в случае необходимости дополнительно применяют автоматическую подстройку частоты. В телемеханике, как правило, используют прямые методы частотной модуляции.

Демодуляция частотно-модулированных колебаний. Для этой цели частотно-модулированные колебания превращают сначала в колебания, модулированные по фазе или по амплитуде, из которых затем выделяется передаваемое сообщение. Поэтому различают частотно-амплитудные или частотно-фазовые (либо просто фазовые) детекторы. В телемеханике в большинстве случаев применяют частотно-амплитудные детекторы.

Простейший частотно-амплитудный детектор состоит из обычного колебательного контура (расстроенного относительно основной частоты приходящего сигнала) и амплитудного детектора. При изменении частоты сигнала значение напряжения на контуре изменяется. Однако из-за криволинейности ветвей резонансной кривой колебательного контура такие детекторы дают значительные нелинейные искажения.

Более совершенным частотно-амплитудным детектором является частотный дискриминатор, выполняемый с двумя вторичными расстроенными контурами (рис. 5.5, а).

Если, например, модулированные по частоте колебания, подаваемые на вход, лежат в полосе 1100 ÷ 1000 Гц, то контур К1 настраивается на частоту 1050 Гц, контур К2на частоту 1100 Гц и контур К3на частоту 1000 Гц (рис. 5.5, б).

Контур К1 является широкополосным, пропускающим частоты, на которые настраиваются контуры К2 и К3. Напряжения, снимаемые с контуров К2, К3, детектируются, и с резисторов R1, R2 снимается напряжение, зависящее от частоты сигнала.

Когда на вход подается частота 1100 Гц, с резистора R1 можно снять напряжение U2, которое больше напряжения U3 (на резисторе R2) при прохождении частоты, например, 1070 Гц.

Диоды Д1 и Д2 включены таким образом, что напряжение Uвых на выходе дискриминатора равно разности напряжений: Uвых =U2 – U3. Поэтому резонансную кривую контура К3 можно изобразить в другой полярности (пунктир на рис. 5.11, б) по отношению к кривой контура К2.

Если сложить резонансные кривые контуров К2 и К3, то получится результирующая кривая дискриминатора, представляющая собой зависимость напряжения на выходе от частоты входного сигнала (рис. 5.11, в). На значительном участке эта характеристика линейна.

Рис. 5.5.Демодуляция частотно-модулированного сигнала:

схема частотного дискриминатора (а) и его характеристики (б, в)

 

Сравнение амплитудной (АМ) и частотной (ЧМ) модуляций показывает, что:

1) техническая реализация АМ проще, чем ЧМ;

2) полоса частот при АМ значительно меньше, чем при ЧМ;

3) помехоустойчивость ЧМ значительно выше АМ. Это объясняется тем, что помехи воздействуют в первую очередь на амплитуду сигнала (см. рис. 5.1, e), что при ЧМ не имеет существенного значения, так как в ЧМ-приемниках обычно применяют двустороннее ограничение сигнала (см. пунктир на рис. 5.1, е). В то же время при АМ изменение амплитуды сообщения вызывает изменение амплитуды переносчика, и такое ограничение, срезающее помехи, применять нельзя;

4) при ограниченной пиковой мощности передатчика средняя мощность АМ-сигнала оказывается меньше мощности ЧМ-сигнала. Это следует из рис. 5.1, ж, на котором изображена немодулированная несущая с максимальной амплитудой. При ЧМ амплитуда несущей не изменяется, а при АМ ее необходимо уменьшать до значения А (пунктир), что снижает среднюю мощность сигнала.

Из-за меньшей помехоустойчивости АМ как самостоятельный вид модуляции в телемеханике находит ограниченное применение и используется в основном как промежуточный вид модуляции при двойных модуляциях, о которых будет сказано далее. Большое применение нашла амплитудная демодуляция как промежуточный этап при частотной или фазовой демодуляции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]