Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом плазма прошлых лет.doc
Скачиваний:
71
Добавлен:
07.06.2015
Размер:
2.18 Mб
Скачать

3.4 Методы контроля

Все методы, применяемые для неразрушающего контроля качества сварных соединений, осуществляются либо передачей энергии, либо передачей вещества.

Наибольшее распространение получил радиационный вид контроля, осуществляемый с помощью передачи энергии рентгеновскими и гамма-излучениями, которые, проходя через контролируемый объект, изменяют интен­сивность излучения в местах наличия дефектов. Это из­менение регистрируется рентгеновской пленкой или электрорадиографической пластиной — радиографический метод. Реже используется радиоскопический метод, при котором радиационное изображение преобразовывается и передается для визуального анализа на выходной экран, а также радиометрический метод, когда радиаци­онная информация преобразовывается в электрические сигналы, регистрируемые по показаниям приборов. Ра­диационные методы: позволяют выявить внутренние и поверхностные несплошности в стыковых швах любых материалов.

Из акустических методов контроля наибольшее рас­пространение получила ультразвуковая дефектоскопия, осуществляемая эхо-методом. Реже применяют теневой метод, а также контроль поверхностными (Рэлея) и нормальными (Лэмба) волнами. Хорошо выявляются дефекты с малым раскрытием, типа трещин, в том числе и те, выявление которых затруднено при радиационной дефектоскопии.

Среди магнитных методов контроля следует указать магнитографический и магнитопорошковый [12].

а) Метод течеискания

Физические основы контроля. Сварные соединения многих конструкций, например, резервуаров, газгольдеров, трубопроводов, должны обла­гать не только прочностью, но и непроницаемостью для жидкостей или газов. Неплотности сварных соединений вызывают потерю продуктов и опасность заражения окружающей среды, если продукты токсичны, снижают коррозионную стойкость сварных швов, создают другие разрушения, отрицательно влияющие на работу сварных конструкций. Для многих из них допуски на утечку про­дукта через неплотности очень «жесткие». Например, для сосудов с токсичными веществами общая утечка га­за через сварные соединения не должна превышать 3*10-9 мм3 МПа/с.

Если к сварным соединениям предъявляют требования непроницаемости для жидкости и газов, то надежность сварной конструкции будет характеризоваться герметичностью. Нарушения герметичности происходят через не­плотности, которые носят название течей.

Течи — это сквозные дефекты сварных соединений или структуры, размеры которых позволяют продукту выйти наружу. Сквозные дефекты в сварных соединениях могут быть первичными и вторичными. К первичным дефектам, образующимся в период формирования сварного шва, относятся свищи — сквозные удлиненные поры типа каналов, непровары со шлаковыми каналами, горячие трещины. Ко вторичным дефектам относятся те, которые появляются через некоторое время после завер­шения сварки — холодные и усталостные трещины, свищи, образовавшиеся под действием агрессивных сред, динамической нагрузки и пр.

Методы течеискания основаны на том, что пробное или контрольное вещество используют в качестве рабо­чего продукта, с помощью которого выявляют и регист­рируют течи.

Пробным называют вещество, избирательно регистри­руемое при данном методе контроля, например, фреон и другие газы при галлоидном методе течеискания.

Контрольным называют вещество, которое экономически и технологически целесообразно применять либо в виде пробного, либо в смеси с пробным, например, керосин или гелиево-азотная смесь. Вакуумный метод контроля позволяет выявить неплотности минимальным диаметром 0,006 мм.

б) Химический метод

В основе химического метода контроля лежит исполь­зование свойства индикаторного вещества изменять свою окраску за счет химического взаимодействия с контроль­ным веществом.

Сущность этого метода состоит в том, что в контролируемый сварной сосуд, подвергнутый предварительно гидравлическому или пневматическому испытанию, по­дается контрольный газ, который под давлением выходит через неплотности и в местах течей окрашивает индика­торное вещество, предварительно нанесенное па поверх­ность сварных соединений.

в) Ультразвуковой метод

Физические основы контроля. Определенными преимуществами ультра­звукового метода контроля, оперативностью, чувствительностью к наиболее опасным дефектам типа трещин и непроваров, высокими технико-экономическими показателями. Немаловажное значение имеет появление пор­тативной и надежной ультразвуковой аппаратуры.

В настоящее время ультразвуковой метод может быть успешно применен для контроля практически всех типов сварных соединений монтируемых конструкций из малоуглеродистых и низколегированных сталей; ведутся работы по решению проблемы ультразвуковой дефектоскопии сварных соединений из аустенитных сталей.

В основе ультразвуковых методов контроля лежит использование упругих колебаний определенной часто­ты, которые и называются ультразвуковыми. Применить ультразвук для контроля сплошности материалов впер­вые предложил чл.-корр. АН СССР С. Я. Соколов.

Полученные ультразвуковые колебания могут быть направленно введены в упругую среду, с которой соприкасается пластина-излучатель. Если же к пьезопластине подвести ультразвуковые колебания, то они преобразуются в электрический ток соответствующей частоты, ко­торый может быть снят с электродов излучателя, стано­вящегося в этом случае приемником.

г) Радиационный метод

Физические основы контроля. Возможность неразрушающего контроля радиацион­ными методами основана на способности ионизирующих излучений, испускаемых источником, проникать с той или иной степенью ослабления через сварное соединение и воздействовать на регистрирующее устройство (детектор).

В зависимости от способа регистрации результатов (способа детектирования) различают три метода радиа­ционного контроля: радиографический, радиоскопический и радиометрический.

На монтаже наибольшее распространение получил радиографический метод контроля сварных соедине­ний, поскольку радиографический снимок является документальным подтвержде­нием качеству сварного сое­динения. Аппаратура для его осуществления отличается относительно небольшой мас­сой, компактностью и мо­бильностью, что позволяет легко ранспортировать в применять ее в стесненных условиях и на высоте.

Радиоскопический и радиометрический методы дают возможность автоматизировать процесс контроля, но ввиду громоздкости аппаратуры находят применение преимущественно в заводских условиях. Следует отметить, что при радиационных методах контроля возникает необходимость обеспечения радиационной безопасности обслуживающего персонала и окружающего населения в соответствии с требованиями санитарных правил и другой нормативно-технической документации.