Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
652716_59D69_lee_r_e_phycology.pdf
Скачиваний:
957
Добавлен:
10.06.2015
Размер:
29.83 Mб
Скачать

BASIC CHARACTERISTICS OF THE ALGAE

27

 

 

Fig. 1.31 Two prominent phycologists of the twentieth century, Felix Eugen Fritsch (left) and Gilbert Morgan Smith (right). Photograph taken by Ralph Lewin.

Felix Eugen Fritsch Born April 26, 1879, in Hampstead, United Kingdom, died May 23, 1954. Dr. Fritsch was educated at the University of London and the University of Munich where he received his Ph.D. From 1902 to 1911, he was an assistant professor at University College London; from 1905 to 1906, a lecturer at Birkbeck College; and from 1907 to 1911, a lecturer at East London College. In 1911, he became head of the Department of Botany at Queen Mary College, University of London, where he stayed until retirement in 1948. Dr. Fritsch was the author of a number of books, by far the best known being The Structure and Reproduction of the Algae, which today is still the most comprehensive treatise on the algae as a whole.

Gilbert Morgan Smith Born January 6, 1885 in Beloit, Wisconsin. Died July 11, 1959. Dr. Smith received his BS from Beloit College (1907) and his Ph.D. from the University of Wisconsin (1913). From 1913 to 1925, he was at the University of Wisconsin, ultimately as an associate professor. From 1925 until his retirement, he was a professor at Stanford University. Dr. Smith is best known for his books on algae, which include Phytoplankton of the Inland Lakes of Wisconsin, The Freshwater Algae of the United States,

Cryptogamic Botany, and Marine Algae of the Monterey Peninsula.

REFERENCES

Andersen, R. A., Barr, D. J. S., Lynn, D. H., Melkonian, M., Moestrup, O., and Sleigh, M. A. (1991). Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164:1–8.

Anderson, L. K., and Toole, C. M. (1998). A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol. Microbiol. 30:467–74.

Beech, P. L. (2003). The long and short of flagellar length control. J. Phycol. 39:837–39.

Beech, P. L., and Wetherbee, R. (1990). Direct observations on flagellar transformation in Mallomonas splendens (Synurophyceae). J. Phycol. 26:90–5.

Betsche, T., Schaller, D., and Melkonian, M. (1992). Identification and characterization of glycolate oxidase and related enzymes from the endocynotic alga Cyanophora paradoxa and from pea leaves. Plant Physiol. 98:887–93.

Bhattacharya, D., and Ehlting, J. (1995). Actin coding regions: gene family evolution and use as a phylogenetic marker. Arch. Protistenkd. 145:155–64.

Bouck, G. B. (1969). Extracellular microtubules. The origin, structure, and attachment of flagellar hairs in Fucus and Ascophyllum antherozoids. J. Cell Biol. 40:446–60.

Brugerolle, G., and Mignot, J.-P. (2003). The rhizoplast of chrysomonads, a basal body-nucleus connector that polarises the dividing spindle. Protoplasma 222:13–21.

Caron, L., Douady, D., Quinet-Szely, M., deGoër, S., and Berkaloff, C. (1996). Gene structure of a chlorophyll a/c-binding protein from a brown alga: Presence of an intron and phylogenetic implications. J. Mol. Evol. 43:270–80.

Coleman, A. W. (1985). Diversity of plastid DNA configuration among classes of eukaryote algae. J. Phycol. 21:1–16.

Dutcher, S. K. (1995). Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet. 11:398–404.

Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H., and Chase, M. W. (1994). A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc. Natl. Acad. Sci., USA 91:7281–5.

Fujiwara, S., Sawada, M., Someya, J., Minaka, N., Kawachi, M., and Inouye, I. (1994). Molecular phylogenetic analysis of rbcL in the Prymnesiophyta. J. Phycol. 30:863–71.

Glazer, A. N. (1982). Phycobilisomes: Structure and dynamics. Annu. Rev. Microbiol. 36:173–98.

28 INTRODUCTION

Glazer, A. N., Yeh, S. W., Webb, S. P., and Clark, J. H. (1985). Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes. Science 227:419–23.

Grossman, A., Manodori, A., and Snyder, D. (1990). Light-harvesting proteins of diatoms: Their relationship to the chlorophyll a/b binding protein of higher plants and their mode of transport into plastids. Mol. Gen. Genetics 224:91–100.

Grossman, A. R., Schaffer, M. R., Chiang, G. G., and Collier, J. L. (1993). The phycobilisome, a lightharvesting complex response to environmental conditions. Microbiol Rev. 57:725–49.

Hegemann, P. (1997). Vision in microalgae. Planta 203:265–74.

Jenks, A., and Gibbs, S. P. (2000). Immunolocalization and distribution of Form II RUBISCO in the pyrenoid and chloroplast stroma of Amphidinium carterae and Form I RUBISCO in the symbiont-derived plastids of

Peridinium foliaceum (Dinophyceae). J. Phycol. 36:127–38.

Johnson, K. A. (1995). Keeping the beat: form meets function in the Chlamydomonas flagellum. BioEssays 17:847–54.

Iwamoto, K., Suzuki, K., and Ikawa, T. (1996). Purification and characterization of glycolate oxidase from the brown alga Spatoglossum pacificum (Phaeophyta). J. Phycol. 32:790–8.

Kauss, H. (1974). Osmoregulation in Ochromonas. In

Membrane Transport in Plants, ed. U. Zimmermann, and J. Daintz, pp. 90–4. Berlin: Springer-Verlag.

Kawai, H., and Kreimer, G. (2000). Sensory mechanisms. Phototaxes and light perception in algae. In The Flagellates, ed. B. S. C. Leadbeater, and

J. C. Green, pp.124–46. London:Taylor and Francis. Kawai, H., Nakayama, T., Inouye, I., and Kato, A. (1997). Linkage of 5S ribosomal DNA to other rDNAs in the

chromophytic algae and related taxa. J. Phycol. 33:505–11.

Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–21.

Laatsch, T., Zauner, S., Stoebe-Maier, B., Kowallik, K. V., and Maier, U.-G. (2004). Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are located in the nucleus. Mol. Biol. and Evol. 21:1318–22.

Lee, R. E. (1977). Evolution of algal flagellates with chloroplast endoplasmic reticulum from the ciliates.

S. Afr. J. Sci. 73:179–82.

Leipe, D. D., Wainright, P. O., Gunderson, J. H., Porter, D., Patterson, D. J., Valois, F., Himmerich, S., and

Sogin, M. L. (1994). The stramenopiles from a molecular perspective: 16S-like rRNA sequences from

Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–77.

Manhart, J. R., and McCourt, R. M. (1992). Molecular data and species concepts in the algae. J. Phycol. 28:730–7.

Meeks, J. C. (1974). Chlorophylls. In Algal Physiology and Biochemistry, ed. W. D. P. Stewart, pp. 161–75. Berkeley: Univ. Calif. Press.

Melkonian, M. (1980). Flagellar roots, mating structure and gametic fusion in the green alga Ulva lactuca (Ulvales). J. Cell Sci. 46:149–69.

Melkonian, M., Reize, I. B., and Preisig, H. R. (1987). Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies on

Nephroselmis olivaea (Prasinophyceae). In Algal Development, Molecular and Cellular Aspects, ed. W. Wiessner, D. G. Robinson, and R. C. Starr, pp. 102–13. Heidelberg: Springer.

Mitchell, D. R. (2000). Chlamydomonas flagella. J. Phycol. 36:261–73.

Miyagishima, S., Nishida, K., and Kuriowa, T. (2003). An evolutionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci. 8:432–8.

Moestrup, Ø. (1982). Flagellar structure in algae:

A review, with new observations particularly on the Chrysophyceae. Phaeophyceae (Fucophyceae), Euglenophyceae, and Reckertia. Phycologia

21:427–528.

Moestrup, O. (2000). The flagellate cytoskeleton. In The Flagellates, ed. B. S. C. Leadbeater, and J. C. Green, pp.69–94. London:Taylor and Francis.

Murakami, A., Miyashita, H., Iseki, M., Adachi, K., and Mimuro, M. (2004). Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633.

Nagasato, C, Yoshikawa, S., Yamashita, M., Kawai, H., and Motomura, T. (2003). Pyrenoid formation associated with the cell cycle in the brown alga, Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). J. Phycol. 39:1172–80.

Osteryoung, K. W., and Nunnari, J. (2003). The division of endosymbiotic organelles. Science 302:1698–1704.

Patron, N. J., and Keeling, P. J. (2005). Common evolutionary origin of starch biosynthesis enzymes in green and red algae. J. Phycol. 41:1131–41.

Patterson, D. J., and Hausmann, K. (1981). The behavior of contractile vacuole complexes of cryptophycean flagellates. Br. Phycol. J. 16:429–39.

BASIC CHARACTERISTICS OF THE ALGAE

29

 

 

Percival, E., and McDowell, R. H. (1967). Chemistry and Enzymology of Marine Algal Polysaccharides. New York: Academic Press.

Porter, G., Tredwell, C. J., Searle, G. F. W., and Barber, J. (1978). Picosecond time-resolved energy transfer in

Porphyridium cruentum. Biochim. Biophys. Acta

501:232–45.

Ragan, M. A. (1994). 18S ribosomal DNA sequences indicate a monophyletic origin of Charophyceae. J. Phycol. 30:490–500.

Raven, J. (1997). CO2 concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell and Environ. 20:147–54.

Ringo, D. L. (1967). Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33:543–71.

Rosenbaum, J. L., and Witman, G. B. (2002). Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3:815–25.

Samsonoff, W. A., and MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at extremes of habitat. Arch. Microbiol. 176:402–5.

Saunders, G. W., and Hommersand, M. H. (2004). Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Amer. J. Bot. 91:1494–1507.

Schoppmeier, J., and Lechtreck, K.-F. (2003). Flagellar regeneration in Spermatozopsis similes (Chlorophyta). J. Phycol. 39:918–22.

Snell, W. J. (1976). Mating in Chlamydomonas:

A system for the study of specific cell adhesion.

I.Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion.

J.Cell Biol. 68:48–69.

Stiller, J. W., and Hall, B. D. (1997). The origin of red algae: implication for plastid evolution. Proc. Natl. Acad. Sci. USA 94:4520–5.

Sukenik, A., Tchernov, D., Kaplan, A., Huertas, E., Lubian, L. M., and Livne, A. (1997). Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 33:969–74.

van der Auwera, G., and deWachter, R. (1997). Complete large subunit ribosomal RNA sequences from the heterokont algae Ochromonas danica, Nannochloropsis salina, and Tribonema aequale, and phylogenetic analysis. J. Mol. Evol. 45:84–90.

Vergara, J. J., and Niell, F. X. (1993). Effects of nitrate availability and irradiance on internal nitrogen constituents in Corallina elongata (Rhodophyta). J. Phycol. 29:285–93.

Vierkotten, L., Simon, A., and Becker, B. (2004). Preparation and characterization of protoplasts from the prasinophyte Scherffelia dubia (Chlorophyta). J. Phycol. 40:1106–11.

Wessel, D., and Robinson, D. G. (1979). Studies on the contractile vacuole of Poterioochromonas malhamensis

Peterfi. I. The structure of the alveolate vesicles. Eur. J. Cell Biol. 19:60–6.

Zhang, H., and Lin, S. (2003). Complex structure of the Form II RUBISCO in the dinoflagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 38:1160–71.

Part II

The prokaryotic algae

The cyanobacteria or blue-green algae form a natural group by virtue of being the only prokaryotic algae. Prokaryotic algae have an outer plasma membrane enclosing protoplasm containing photosynthetic thylakoids, 70S ribosomes, and DNA fibrils not enclosed within a separate membrane. Chlorophyll a is the main photosynthetic pigment, and oxygen is evolved during photosynthesis.

Соседние файлы в предмете Ботаника