Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
652716_59D69_lee_r_e_phycology.pdf
Скачиваний:
957
Добавлен:
10.06.2015
Размер:
29.83 Mб
Скачать

317

chloroplast E.R. which was the remains of the food vesicle membrane of the host.

Although the above evolutionary scheme is discussed in one sequence, it is probable that two membranes of chloroplast E.R. evolved at least three times, with one line leading to the Chlorarachniophyta, a second to the Cryptophyta, and the third (or more) leading to the Heterokontophyta and Prymnesiophyta.

The algae with two membranes of chloroplast E.R. are:

Chlorarachniophyta: chloroplast derived from a green alga, chlorophyll a and b present, nucleomorph between inner and outer membrane of chloroplast E.R.

Cryptophyta: Chlorophyll a and c, phycobiliproteins, nucleomorph between inner and outer membranes of chloroplast E.R., starch in grains between inner membrane of chloroplast E.R. and chloroplast envelope, periplast inside plasma membrane, tripartite hairs on flagella.

Heterokontophyta: tripartite hairs on anterior tinsel flagellum, posterior whiplash flagellum, chlorophyll a and c, fucoxanthin, storage product usually chrysolaminarin in vesicles in cytoplasm.

Prymnesiophyta (haptophytes): two whiplash flagella, haptonema present, chlorophyll a and c, fucoxanthin, scales common outside cell, storage product usually chrysolaminarin in vesicles in cytoplasm.

Chlorarachniophyta

These algae (Fig. V.2) represent an intermediate stage in the evolution of two membranes of chloroplast endoplasmic reticulum. This group has a small number of green amoebae that have ingested green algal cells in the past, with the green algal cells evolving into endosymbionts within the amoeba host (Fig. V.3) (Hibberd and Norris, 1984). A nucleomorph or reduced nucleus occurs in the green algal symbiont. The reduced nature of the nucleomorph implies that some of the functions originally coded by the DNA of the endosymbiont nucleus have been taken over by the nucleus of the host amoeba. The chloroplast (e.g., endosymbiont chloroplast) contains chlorophyll a and b and is surrounded by four membranes. The innermost two membranes are those of the chloroplast envelope of the endosymbiont. The next membrane is the plasma membrane of the endosymbiont and the outer membrane represents the food-vacuole membrane of the amoeba host. Thus, the algae in the Chlorarachniophyta represent an intermediate stage in the evolution of the chloroplasts of some of the algae in the Heterokontophyta.

Chlorarachnion reptans is a marine amoeba that forms large plasmodia with the individual cells linked by a network of reticulopodia (Geitler, 1930; Hibberd and Norris, 1984). The cells are naked and contain a number of lobed chloroplasts, each with a central pyrenoid (Fig. V.3). Four

318

Fig. V.2 Examples of algae in the Chlorarachniophyta. ((a) adapted from Calderon-Saenz and Schnettner, 1989; (b) adapted from Ishida et al., 1996; (c) adapted from Hibberd and Norris, 1984; (d) adapted from Moestrup and Sengco, 2001.)

Fig. V.3 Semidiagrammatic drawing of the cell structure of

Chlorarachnion reptans. (Adapted from Hibberd and Norris, 1984.)

membranes surround the chloroplast, which has a pyrenoid and nucleomorph. A vesicle containing the storage product caps the pyrenoid. Chlorarachnion means “green spider” for the web-like network of reticulopodia (pseudopodia) in which are embedded the green amoeboid cells.

319

Fig. V.4 Chlorarachnion reptans. (Adapted from Hibberd and

Norris, 1984; Grell, 1990.)

The cells move over the reticulopodia and ingest other algal cells and bacteria as a food source.

Under nutrient deprivation, the star-shaped vegetative cells become resting cells by retracting their reticulopodia, rounding up and secreting a thin cell wall (Grell, 1990). The resting cells apparently rely principally on photosynthate from the chloroplasts as a food source. The resting cells germinate to star-shaped vegetative cells under favorable conditions. Zoosporogenesis occurs by a resting cell dividing twice to produce four zoospores, each with a single flagellum wrapped around the cell body (Fig. V.1(c) and V.4). The zoospores settle to produce the starshaped vegetative cells. Sexual reproduction occurs when a non-motile female gamete is approached by a motile, star-shaped, male gamete. The gametes fuse producing a zygote that germinates into a star-shaped vegetative cell (Grell, 1990).

REFERENCES

Calderon-Saenz, E., and Schnetter, R. (1989). Morphology, biology, and systematics of Cryptochlora perforans (Chloroarachniophyta), a phagotrophic marine alga. Pl. Syst. Evol. 163:165–76.

320

Geitler, L. (1930). Ein grunes Filarplaasmodium und andere neue Protisten. Arch. Protistenkd. 69:615–36.

Grell, K. G. (1990). Some light microscope observations on Chlorarachnion reptans Geitler. Arch. Protistenkd. 138:271–90.

Hibberd, D. J., and Norris, R. E. (1984). Cytology and ultrastructure of Chlorarachnion reptans (Chloroarachniophyta division nova, Chloroarachniophyceae classis nova). J. Phycol. 20:310–30.

Ishida, K., Nakayama, T., and Hara, Y. (1996). Taxonomic studies on the Chlorarchniophyta. II. Generic delimitation of the chlorarachniophytes and description of Gymnochlora syellata gen. et sp. nov. and Lotharella gen. nov. Phycol. Res. 44:37–45.

Lee, R. E. (1977). Evolution of algal flagellates with chloroplast endoplasmic reticulum from the ciliates. South African J. Sci. 73:179–82.

Moestrup, Ø., and Sengco, M. (2001). Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. J. Phycol. 37:624–6.

Соседние файлы в предмете Ботаника