Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
652716_59D69_lee_r_e_phycology.pdf
Скачиваний:
957
Добавлен:
10.06.2015
Размер:
29.83 Mб
Скачать

346 CHLOROPLAST E.R.: EVOLUTION OF TWO MEMBRANES

Fig. 10.17 Adolph Pascher Born May 31, 1881 in Tusset, Bohmerwalde, Province of Krummau, Austria-Hungary. Died by his own hand May 1945. Dr. Pascher was brought up in the Bohmerwalde, a snowy mountainous area, where he attended small schools until he went to the University of Prague. Here he was able to use his first microscope, a tool he was to use for the rest of his life. He graduated from the University of Prague in 1909. From 1909 to 1912, at a time when he suffered from a chronic illness, he studied pharmaceutical botany. From 1912 to 1927, he worked as a lecturer at different universities including the German Technical University in Prague. During this time he performed phycological research at a hydrobiological station in Hirschberg, Germany, and at another hydrobiological station that he founded in Upper Bohemia in Czechoslovakia. In 1927, he became director of the Botanical Institute and Gardens at the University of Prague. In the early 1930s, Dr. Pascher became involved in the Nazi Brown Shirt movement, which resulted in a hiatus of his numerous publications from 1933 to 1938. In 1939, he started publishing again while remaining active in the Nazi administration. With the fall of the Third Reich, he shot himself in May 1945. Dr. Pascher could be considered as the most prominent phycologist of his time. As stated by Prescott (1951) “His work exerted a greater influence than that of any other phycologist in clarifying modern concepts of algal taxonomy and phylogeny . . . it was his erudite interpretation of facts, nevertheless, which placed the studies of Pascher in a corner stone position.”

REFERENCES

Ahl, T. (1966). Chemical conditions in Ösbysjön, Djursholm. 2. The major constituents. Oikos 17:175–6.

Andersen, R. A. (1982). A light and electron microscopical investigation of Ochromonas sphaerocystis

Matvienko (Chrysophyceae): The statospore, vegetative cell and its peripheral vesicles. Phycologia 21:390–8.

Andersen, R. A. (2004). Biology and systematic of heterokont and haptophyte algae. Amer. J. Bot. 91:1508–22.

Anderson, R. A., and Mulkey, T. J. (1983). The occurrence of chlorophylls c1 and c2 in the Chrysophyceae. J. Phycol. 19:289–94.

Belcher, J. H. (1969). A morphological study of the phytoflagellate Chrysococcus rufescens Klebs in culture. Br. Phycol. J. 4:105–17.

Belcher, J. H. (1974). Chrysophaera magna sp. nov., a new coccoid member of the Chrysophyceae. Br. Phycol. J. 9:139–44.

Belcher, J. H., and Swale, E. M. F. (1972). The morphology and fine structure of the colourless colonial flagellate Anthophysa vegetans (O. F. Müller) Stein. Br. Phycol. J. 7:335–46.

Bird, D. F., and Kalff, J. (1986). Bacterial grazing by planktonic lake algae. Science 231:493–4.

Booth, B. C., and Marchant, H. J. (1987). Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J. Phycol. 23:245–60.

Bouck, G. B. (1971). The structure, origin, isolation, and composition of the tubular mastigonemes of the

Ochromonas flagellum. J. Cell Biol. 50:362–84. Caron, D. A., Sanders, R. W., Lim, E-L., Marrasé, C.,

Amaral, L. A., Whitney, S., Aoki, R. B., and Porter, K. G. (1993). Light-dependent phagotrophy in the freshwater mixotrophic chrysophyte Dinobryon cylindricum. Microbial Ecol. 25:93–111.

Daley, R. J., Morris, G. P., and Brown, S. R. (1973). Phagotrophic ingestion of a blue-green alga by

Ochromonas. J. Protozool. 20:58–61.

Dangeard, P. (1966). Sur le nouveau genre Giraudyopsis P.D. Le Botantiste 49:99–108.

Dubowsky, N. (1974). Selectivity of ingestion and digestion in the chrysomonad flagellate Ochromonas malhamensis. J. Protozool. 21:295–8.

Dunlap, J. R., Walne, P. L., and Preisig, H. R. (1987). Manganese mineralization in chrysophycean loricas.

Phycologia 26:394–6.

Eppley, R. W., Rogers, J. N., and McCarthy, J. J. (1969). Half-saturation constants for uptake of nitrate and

HETEROKONTOPHYTA, CHRYSOPHYCEAE

347

 

 

ammonium by marine phytoplankton. Limnol. Oceanogr. 14:912–20.

Fauré-Fremiet, E. (1950). Rythme de marée d’une

Chromulina psammophile. Bull. Biol. Fr. Belg. 84:207–14. Fuhs, G. W., Demmerle, S. D., Canelli, E., and Chen, M.

(1972). Characterization of phosphorus-limited algae (with reflections on the limiting nutrient concept).

Am. Soc. Limnol. Oceanogr. Spec. Symp. 1:113–32. Gibbs, S. P. (1962). Nuclear envelope–chloroplast rela-

tionships in algae. J. Cell Biol. 14:433–44.

Herth, W., and Zugenmaier, P. (1979). The lorica of

Dinobryon. J. Ultrastruct. Res. 69:262–72.

Herth, W., Kuppel, A., and Schnepf, E. (1977). Chitinous fibrils in the lorica of the flagellate chrysophyte

Poteriochromonas stipitata (Syn. Ochromonas malhamensis). J. Cell Biol. 73:311–21.

Hibberd, D. J. (1970). Observations on the cytology and ultrastructure of Ochromonas tuberculatus sp. nov. (Chrysophyceae), with special reference to the discobolocysts. Br. Phycol. J. 5:119–43.

Hibberd, D. J. (1976). The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): A survey with some new observations on the ultrastructure of the Chrysophyceae.

Bot. J. Linn. Soc. 72:55–80.

Hibberd, D. J. (1977). Ultrastructure of cyst formation in Ochromonas tuberculata (Chrysophyceae). J. Phycol. 13:309–20.

Hill, F. G., and Outka, D. E. (1974). The structure and origin of mastigonemes in Ochromonas minute and

Monas sp. J. Protozool. 21:299–312.

Kauss, H. (1967). Metabolism of isofluoridoside (O- -D- galactopyranosyl-[1 → 1]-glycerol) and osmotic balance in the freshwater alga Ochromonas. Nature 214:1129–30.

Kosman, C. A., Thomsen, H. A., and Ostergaarad, J. B. (1993). Parmales (Chrysophyceae) from Mexican, Californian, Baltic, Arctic and Antarctic waters with a description of a new subspecies and several new forms. Phycologia 32:116–28.

Kristiansen, J. (1969). Lorica structure in Chrysolykos (Chrysophyceae). Bot. Tidsskr. 64:162–8.

Lee, R. E. (1978). Formation of scales in Paraphysomonas vestita and the inhibition of growth by germanium dioxide. J. Protozool. 25:163–6.

Lee, R. E., and Kugrens, P. (1989). Biomineralization in

Anthophysa vegetans (Chrysophyceae). J. Phycol. 25:591–6.

Lehman, J. T. (1976). Ecological and nutritional studies on Dinobryon Ehrenb: Seasonal periodicity and the phosphate toxicity problem. Limnol. Oceanogr. 21:646–64.

Marchant, H. J., and McEldowney, A. (1986). Nanoplankton siliceous cysts from Antarctica are algae. Mar. Biol. (Berl.) 92:53–7.

O’Kelly, C. J. (1989). The evolutionary origin of the brown algae: information from the studies of motile cell ultrastructure. In The Chrysophyte Algae: Problems and Perspectives, ed. J. C. Green, B. S. C. Leadbeater, and W. L. Diver, pp. 255–78. Oxford: Clarendon Press.

Preisig, H. R. (1994). Siliceous structures and silicification in flagellated protists, Protoplasma 181:29–42.

Preisig, H. R. (1995). A modern concept of chrysophyte classification. In Chrysophyte Algae, ed. C. D. Sandgren, J. R. Smol, and J. Kristiansen, pp. 46–74. Cambridge: Cambridge University Press.

Prescott, G. W. (1951). History of phycology. In Manual of Phycology, ed. G. M. Smith, pp. 1–12. New York: The Ronal Press Co.

Pringsheim, E. G. (1946). On iron flagellates. Philos. Trans. R. Soc. [B] 232:311–42.

Sandgren, C. D. (1980). An ultrastructural investigation of resting cyst formation in Dinobryon cylindricum Imhof (Chrysophyceae, Chrysophycophyta).

Protistologica 16:259–76.

Sandgren, C. D. (1981). Characteristics of sexual and asexual resting cyst (statospore) formation in

Dinobryon cylindricum Imhof (Chrysophyta). J. Phycol. 17:199–210.

Sandgren, C. D. (1983). Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19:64–70.

Saunders, G. W., Potter, D., and Andersen, R. A. (1997). Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. J. Phycol. 33:310–18.

Schiller, J. (1929). Neue Chrysoand Cryptomonaden aus Altwässern der Donau bei Wien. Arch. Protistenk. 66:436–58.

Schnepf, E., and Deichgraber, G. (1969). Uber die Feinstruktur von Synura petersenii unter besonderer Berücksuchtigung der Morphogenesis ihrer Kieselschuppen. Protoplasma 68:85–106.

Sheath, R. G., Hellebust, J. A., and Sawa, T. (1975). The statospore of Dinobryon divergens Imhoff: Formation and germination in a subarctic lake. J. Phycol. 11:131–8.

Thomsen, H. A., Zimmerman, B., Moestrup. Ø., and Kristiansen, J. (1981). Some new freshwater species of

Paraphysomonas (Chrysophyceae). Nord. J. Bot.

1:559–81.

348 CHLOROPLAST E.R.: EVOLUTION OF TWO MEMBRANES

Throndsen, J. (1971). Apedinella gen. nov. and the fine structure of A. spinifera (Throndsen) comb. nov. Norw. J. Bot. 18:47–64.

Walne, P. L., Passarelli, V., Lenzi, P., Barsanti, L., and Gualtieri, P. (1995). Isolation of the flagellar swelling and identification of retinal in the phototactic flagellate, Ochromonas danica (Chrysophyceae). J. Euk. Microbiol. 42:7–11.

Watson, S. B., and Satchwill, T. (2003). Chrysophyte odour production: resource-mediated changes at the cell and population levels. Phycologia 42:393–405.

Wetherbee, R., and Andersen, R. A. (1992). Flagella of a chrysophycean alga play an active role in prey capture and selection. Direction observations on

Epipyxis pulchra using image enhanced video microscopy. Protoplasma 166:1–7.

Willén, T. (1961). The phytoplankton of Ösbysjön Djursholm. 1. Seasonal and vertical distribution of the species. Oikos 12:36–79.

Zhang, X., and Watanabe, M. M. (2001). Grazing and growth of the mixotrophic chrysomonad

Poterioochromonas malhamensis (Chrysophyceae) feeding on algae. J. Phycol. 37:738–43.

Zhang, X., Watanabe, M. M., and Inouye, I. (1996). Light and electron microscopy of grazing by

Poterioochromonas malhamensis (Chrysophyceae) on a range of phytoplankton taxa. J. Phycol. 32:37–46.

Соседние файлы в предмете Ботаника