Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
131
Добавлен:
04.03.2016
Размер:
1.02 Mб
Скачать

56.Скорость звука в газах.

Скорость звука — скорость распространения звуковых волн в среде. Скорость звука обычно величина постоянная для данного вещества при заданных внешних условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом.

Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.

Скорость звука в любой среде вычисляется по формуле:

где β — адиабатическая сжимаемость среды; ρ — плотность.

Для газов эта формула выглядит так:

где γ — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k — постоянная Больцмана; R — универсальная газовая постоянная; T — абсолютная температура в кельвинах; t — температура в градусах Цельсия; m — молекулярная масса; M — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

57. Передача информации с помощью волн.

Монохроматическая волна(волна строгой частоты; синусоидальная) не может передавать информацию, т. К. каждая последующая синусоидальная повторяет предыдущую. Для передачи информации, волны моделируют( изменяют либо длину волны либо частоту)

лямда пакет

58. Групповая скорость волны. Дисперсия.

Групповая скорость волн, скорость движения группы или цуга (вереницы) волн, которая при отсутствии поглощения в среде совпадает со скоростью перемещения энергии этой группы волн. Пример группы волн — сигнал, изображенный на рис. 1. Группа волн не является периодической волной (т. е. в точности повторяющейся через определенные промежутки времени), а состоит из набора гармонических волн, частоты которых лежат в некотором интервале, тем более узком, чем более плавную форму имеет огибающая группы волн.

Если среда не обладает дисперсией, то все гармонические волны, входящие в группу, распространяются с одной и той же фазовой скоростью. С той же скоростью распространяется и огибающая группы; в этом случае Г. с. совпадает с фазовой.

При наличии дисперсии гармонической волны различных частот, образующие группу, распространяются с разными фазовыми скоростями. Вследствие этого при распространении изменяются соотношения между фазами разных гармонических волн и происходит искажение формы огибающей. Однако если фазовые скорости группы волн отличаются друг от друга мало (сигнал с узким спектром), то форма огибающей сохраняется при распространении и влияние дисперсии сказывается лишь на том, что скорость движения огибающей группы, т.е. Г. с., отличается от фазовой скорости.

На рис. 2 представлены три последовательных мгновенных снимка сигнала с узким спектром, распространяющегося в среде с дисперсией. Наклон пунктирных прямых, соединяющих точки одинаковой фазы (максимумы), характеризует фазовую скорость; наклон прямых, соединяющих соответствующие точки огибающей (начала и концы сигнала), характеризует Г. с. сигнала. Если при распространении сигнала максимумы и минимумы движутся быстрее, чем огибающая, то это означает, что фазовая скорость данной группы волн превышает её Г. с. (рис. 2, а).

Дисперсия звука, зависимость показателя преломления вещества от длины волны. Д. з. является причиной изменения формы звуковой волны (звукового импульса) при распространении его в среде. Различают Д. з., обусловленную физическими свойствами среды, и Д. з., обусловленную наличием границ тела, в котором звуковая волна распространяется, и от свойств тела не зависящую.

Д. з. первого типа может вызываться различными причинами. Наиболее важны случаи Д. з., связанной с релаксационными процессами (см. ниже), происходящими в среде при прохождении звуковой волны. Механизм возникновения релаксационной Д. з. можно выяснить на примере многоатомного газа.

Релаксационная Д. з. может быть не только в газах, но и в жидкостях, где она связана с различными межмолекулярными процессами, в растворах электролитов, в смесях, в которых под действием звука возможны химические реакции между компонентами, в эмульсиях, а также в некоторых твёрдых телах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]