Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
131
Добавлен:
04.03.2016
Размер:
1.02 Mб
Скачать

59.Стоячие волны. Колебания струны.

Стоя́чая волна́ — колебания в распределенных колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе; в природе — волны Шумана.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

Для демонстрации стоячих волн в газе используют трубу Рубенса.

Уравнение колебаний струны относится к уравнениям гиперболического типа.

Каждую точку струны можно охарактеризовать значением ее абсциссы x. Для определения положения струны в момент времени t достаточно знать компоненты вектора смещения точки xв момент времени t.

Будем предполагать, что смещения струны лежат в одной плоскости (x,U) и что вектор смещения

перпендикулярен в любой момент времени к оси x; тогда процесс колебания можно описать одной функцией U(x,t) (смотри рисунок) .

Функция U(x,t) характеризует вертикальное перемещение струны.

- уравнение колебаний струны.

а=const- зависит от упругости, жесткости, массы и т. д.

Существуют следующие методы решения уравнения колебаний струны

Метод Даламбера (метод бегущих волн, метод характеристик);

Метод Фурье (метод стоячих волн, метод разделения переменных).

60. Громкость и высота тона звука.

Звуковые волны – продольные.

сейсмические – поперечные и продольные

20 – 20000 Гц > …..

инфра ультра

звук звук

Тон – звук одной частоты.

Обертон – дополнительная частота.

Тембр – оттенок звука.

Шум – много частот.

Громкость звука зависит от амплитуды колебаний.

Высота звука зависит от частоты колебаний.

61. Эффект Доплера.

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только[1] относительное движение источника и приёмника.

Эффект был впервые описан Кристианом Доплером в 1842 году.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение, имеющее непосредственное отношение к эффекту Доплера.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа — ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется — длина волны увеличивается.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]