Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizo_otvety_NOVYE.docx
Скачиваний:
3874
Добавлен:
10.03.2016
Размер:
2 Mб
Скачать

4. Тест Валунда Шестранда.

Проба РWС-170 (от английского Physical Working Capacity - Объем Физической Работоспособности) предложена скандинавским ученым Андерсеном в 50-х годах (по номенклатуре Всемирной организации здравоохранения этот тест обозначается индексом W-170. Величина РWC-170 соответствует той мощности физической нагрузки, которая приводит к повышению частоты сердечных сокращений до 170 уд/мин.

Проба РWC-170 предназначена для определения физической работоспособности молодых людей (до 30 лет)

Проба основана на следующих положениях, которые определяют выбор пульса, равного именно 170 уд/мин, и способ расчета величин.

I.​ Существует зона оптимального функционирования кардиореспираторной системы при физической нагрузке. У молодых людей она имеет верхнюю границу пульса от 170 до 200 уд/мин. Эта зона характеризует работу сердца в условиях, близких к максимальному потреблению кислорода. Таким образом, с помощью пробы РWС-170 можно установить ту мощность физической нагрузки, которая соответствует началу области оптимального функционирования кардиореспираторной системы. Мощность такой нагрузки является наибольшей, при которой еще возможна работа аппарата кровообращения и дыхания в условиях устойчивого состояния.

II.​  Между частотой сердечных сокращений и мощностью физических нагрузок в относительно большой зоне мощностей мышечной работы наблюдается линейная зависимость. Линейный характер взаимосвязи мощности работы и частоты сердечных сокращений у большинства лиц в возрасте до 30 лет нарушается при пульсе, превышающем 170 уд/мин.

На основании этих факторов при определении физической работоспособности выбрана частота сердечных сокращений 170 уд/мин.

Тест заключается в том, что, исходя из факта наличия линейной зависимости между частотой сердечных сокращений и мощностью физических нагрузок, выполняя лишь две субмаксимальные нагрузки можно путем линейной интра- или экстраполяции установить величину той мышечной работы, при которой частота сердечных сокращений достигает 170 уд/мин.

Аппаратура, необходимая при проведении пробы:

    1. велоэргометр или ступенька,

    2. секундомер,

    3. фонендоскоп

    4. электрокардиограф.

При проведении пробы РWC рекомендуется следующая последовательность действий.

  1.  Изучение медицинского анамнеза, обязательная запись ЭКГ в условиях покоя, измерения артериального давления. Безусловным противопоказанием к проведению пробы являются синдром слабости синусового узла и те же состояния, что и при ЭКГ-исследовании с физическими нагрузками.

  2.  Первая нагрузка - продолжительность 5 минут. Мощность работы должна примерно соответствовать 6 кГм/мин (1 вт) на 1 кг массы тела для мужчин и 3 кГм/мин (0,5 вт) на 1 кг массы тела у женщин. Частота педалирования или подъема на ступеньку - 90-100 шагов в мин (около 15 восхождений за минуту на 2-х ступенчатой лестнице)

  3. ЧСС и АД определяют на последних секундах нагрузки или сразу после нагрузки.

  4. Между первой и второй нагрузкой дается отдых в 3 минуты (для восстановления параметров гемодинамики к исходному или близкому к исходному уровню)

  5. Вторая нагрузка имеет ту же продолжительность - 5 минут, что и первая. Частота восхождений на ступеньку или педалирования на велоэргометре - 120-130 шагов в мин (около 20 восхождений за минуту на 2-х ступенчатой лестнице)

  6. Определяют ЧСС и АД сразу после 2-й нагрузки.

  7. Каждую минуту в течение последующих 5 минут измеряют ЧСС и АД (потребуется для проведения пробы Летунова).

Расчет индивидуальной величины физической работоспособности можно проводить по специальной формуле:

PWC170 = N1 + ( N2 - N1 )х [(170-F1)/(F2-F1)]

где PWC-170 - физическая работоспособность при частоте сердечных сокращений 170 уд/мин, N1 и N2 - соответственно мощности первой и второй нагрузок, F1 и F2 - частота сердечных сокращений в конце первой и второй нагрузки.

Чтобы рассчитать N для первой (N1) и второй (N2) нагрузок воспользуемся следующими формулами.

N’ = m х h х K, где

N’ - мощность подъема,

m - масса обследуемого (кг)

h - высота ступенек (в метрах)

K - количество восхождений за одну нагрузку (например, темп 120 шагов за 1 минуту соответствует 20 восхождениям (каждое из 6 шагов), что составляет за 5 минут - 100 восхождений.

Однако энергия расходуется не только на восхождение на ступеньки, но и на спуск, причем мощность спуска соответствует примерно 1/3 от мощности подъема.

Таким образом, общая мощность нагрузки -

N” = N’ + ( N’ / 3 )

Чтобы получить мощность в 1 минуту (N) надо суммарную мощность (N”) поделить на время теста (t) :

N = N” / t

Например: Обследуемый массой 70 кг совершал восхождения с частотой 90 шагов в минуту в течение 5 минут на ступеньку высотой 0,46 метра.

90 шагов в минуту соответствуют 15 восхождениям в минуту или 75 восхождениям за 5 минут нагрузки.

N’ = 70 х 0,46 х 75 = 2415 кГм

Общая мощность равняется:

N“ = N’ + ( N’ / 3 ) = 2415 + (2415 / 3) = 3220 кГм

Мощность за 1 минуту:

N = N” / t = 3220 / 5 = 644 кГм/мин

Определение физической работоспособности по тесту PWC-170 будет давать надежные результаты лишь при выполнении следующих условий:

  1. для стандартизации процедуры исследования пробы должна выполняться без предварительной разминки.

  2. частота сердечных сокращений в конце второй нагрузки должна быть оптимальной для конкретного лица, т.е. быть примерно на 10 - 15 уд/мин меньше 170 уд/мин. Ошибку при расчетах можно свести до минимума посредством приближения мощности второй нагрузки к величине PWC170.

  3. между нагрузками обязателен трехминутный отдых. При отсутствии полноценного отдыха степень тахикардии может определяться не только непосредственно мощностью о той нагрузке (второй), но дополнительно отражать недовосстановление пульса после первой нагрузки (так называемый пульсовой долг от предыдущей работы) и тогда величины PWC 170 будут заниженными.

НОРМАТИВЫ И ОЦЕНКА ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ

Оценка физической работоспособности может производиться путем сравнения выявленной в процессе проведения пробы величины со значениями, приведенными в табл., а также путем анализа индивидуальной динамики уровня физической работоспособности на различных этапах обследования.

Чем больше величина РWС-170, тем большую мышечную работу может выполнять человек при оптимальном функционировании системы кровообращения. Следовательно, чем больше, РWС-170, тем выше физическая работоспособность. Индивидуальные колебания физической работоспособности как уже отмечалось, определяется в основном производительностью кардиореспираторной системы.

При обследовании здоровых лиц установлено, что чем выше уровень физической работоспособности, тем больше объем сердца как целого органа, объем полости и масса миокарда левого желудочка, максимальный ударный объем крови во время физической нагрузки, максимальное потребление кислорода.

На уровень физической работоспособности оказывают влияние такие факторы, как пол, возраст, размеры тела, физическая активность, наследственность, состояние здоровья и т.д.

Таблица. Оценка физической работоспособности лиц

различного возраста и пола по данным пробы PWC-170.

Возраст, годы

Низкая

Ниже средней

Средняя

Выше средней

Высокая

Женщины

20-29

449

450-549

550-749

750-849

850

30-39

399

400-499

500-699

700-799

800

40-49

299

300-399

400-599

600-699

700

50-59

199

200-299

300-499

500-599

600

Мужчины

20-29

699

700-849

850-1149

1150-1299

1300

30-39

599

600-749

750-1049

1050-1199

1200

40-49

499

500-649

650-949

950-1099

1100

50-59

399

400-549

550-849

850-999

1000

Для нивелирования индивидуальных различий в физическом развитии величины РWС-170 рассчитывают на 1 кг массы тела. При таком подходе к оценке физической работоспособности имеется возможность сравнивать ее уровень не только у лиц различного возраста, но и с различной массой тела.

Средняя величина РWС170 у молодых мужчин (20-29 лет) равняется 1037 кгм/мин, а у женщин 640 кгм/мин, в то время как у спортсменов она превышает эти величины в 2-2,5 раза. У больных уровень физической работоспособности, как правило, ниже обычно наблюдаемого у здоровых. С улучшением функционального состояния систем организма, повышением производительности кардиореспираторной системы, уровень физической работоспособности повышается. Объективный характер получаемой при тестировании информации позволяет количественно оценить эффективность используемых программ реабилитации.

Билет № 11.

Вопрос №1 физич и физиологич св-ва мышц. Типы мышечных сокращений. закон силы.

По морфологическим признакам выделяют 3 группы мышц:

  1. Поперечно-полосатые (скелетная мускулатура)

  2. Гладкие

  3. Миокард (сердечная мышца)

Свойства поперечно-полосатых мышц:

  • Возбудимость – способность ткани отвечать на действие сильного быстрого раздражения изменением физических свойств

  • Проводимость – способность передавать возникшее в ткани возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани

  • Рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением

  • Лабильность – способность ткани реагировать на раздражение с определенной скоростью

  • Сократимость

Функции поперечно-полосатых мышц:

  • Двигательная (динамическая и статическая)

  • Мимическая

  • Обеспечение дыхания

  • Рецепторная

  • Депонирующая

  • Терморегуляторная

Физиологическая особенность гладких мышц: имеют те же свойств, что и скелетные мышцы, но нестабильный мембранный потенциал, который поддерживает мышца в состоянии тонуса, самопроизвольная автоматическая активность, сокращение в ответ на растяжение, пластичность, высокая чувствительность к химическим веществам

Функции гладких мышц:

  1. Поддержание давления в полых органах

  2. Регуляция давления в сосудах

  3. Опорожнение полых органов и продвижение их содержимого

Функция сердечной мышцы: насосная – обеспечение движения крови по сосудам

Физиологическая особенность сердечной мышцы – автоматизм, т.е. возбуждение возникает периодиески под влиянием процессов, которые происходят в самой мышце (+все свойства скелетных мышц).

Различают следующие режимы мышечного сокращения:

1.Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2.Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3.Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела, другие двигательные акты.

Характеристикой работы мышц является их сила (в системе СИ [H]).

Факторы, определяющие силу мышцы:

  • Анатомическое строение (перистые – косо направленные мышцы – способны развивать большее напряжение чем мышцы с параллельным расположением волокон. К числу наиболее сильных относятся жевательные мышцы.)

  • Исходная длина мышцы

  • Число возбужденных волокон

  • Сила тетанического сокращения

  • Работа мышцы

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а следовательно сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. .Максимальная сила различных мышечных групп определяется динамометрами, кистевым, становым и т.д.

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 6,2 кг/см2, трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

Вопрос №2 белки плазмы крови. онкотическое давление.

Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном хлорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме того в нем имеются глюкоза, а также продукты гидролиза белков - мочевина, креатинин, аминокислоты и т.д. Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного азота 14,3-28,6 ммоль/л.

Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Функции альбуминов плазмы:

1.Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование.

2.Служат белковым резервом крови, который составляет 200 г белка. Он используется организмом при белковом голодании.

3.Благодаря отрицательному заряду способствуют стабилизации и препятствуют оседанию форменных элементов крови.

4.Поддерживают кислотно-щелочное равновесие, являясь буферной системой.

5.Переносят половые гормоны, желчные пигменты и ионы кальция.

Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции.

Глобулины включают четыре субфракции - 1, 2,  и -глобулины. Функции глобулинов:

  1. -глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином.

  2. Необоходимы для свертывания крови, т.к. к ним относится один из факторов свертывания -.

  3. Участвуют в растворении тромба, т.к. содержат фермент фибринолитической системы плазминоген.

  4. 2-альбумин церулоплазмин переносит 90% ионов меди, необходимых организму.

  5. Переносят гормоны тироксин и кортизол

  6. -глобулин трансферрин переносит основную массу железа.

  7. несколько -глобулинов являются факторами свертывания крови.

  8. -глобулины выполняют защитную функцию, являясь иммуноглобулинами. При заболеваниях их количество в крови возрастает.

Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови тромб.

Осмотическое давление крови, обуславливаемое ее электролитным составом, в норме составляет 6,6-7,6 атмосферы или 5000-5700 мм.рт.ст.

Онкотическое давление плазмы крови составляет 1/200 осмотического (или 25-30 мм.рт.ст), оно является частью осмотического и зависит от содержания белвков в плазме (80% онкотического давления создают альбумины). Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Оно влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. При снижении концентрации белка в плазме развиваются отеки, т.к. вода перестает удерживаться в сосудистом русле и переходит в ткани.

Вопрос №3 механизм нарушения дыхания при пневмотораксе.

При попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие виды:

1. По механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза).

2. В зависимости от того, какой листок плевры поврежден выделяют наружный и внутренний пневмоторакс.

3. По степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается.

4. В зависимости от стороны поражения - односторонний (правосторонний, левосторонний), двусторонний.

Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.

Механизм возникновения. Воздух или газ может попадать в плевральную полость снаружи (при открытом повреждении грудной клетки и сообщении с внешней средой) или из внутренних органов (например, при травматическом разрыве лёгкого при закрытой травме, либо при разрыве эмфизематозных пузырей, «булл», при минимальной травме или кашле, спонтанный пневмоторакс). В норме лёгкое расправлено за счёт того, что в плевральной полости давление отрицательное. Поэтому при попадании туда воздуха лёгкое спадается.

Вопрос №4 анализ спирограммы

Клинико-физиологические возможности спирографии.

Система легочного дыхания организма, обеспечивающая артериализацию крови в легких. Осуществляют ее благодаря строгой согласованности между собой трех процессов:

1) вентиляции альвеол, обеспечивающей постоянство состава альвеолярного воздуха.

2)непрерывного кровотока через капилляры легкого и распределения крови в строгом соответствии с интенсивностью вентиляции отдельных ее участков.

3) диффузия биологических газов через мембрану с необходимой скоростью.

Совершенно обоснованно для оценки вентиляции используется комплекс показателей, прямо характеризующих важнейшие анатомофизиологические свойства аппарата вентиляции: эластичность легких и грудной клетки, бронхиальную проводимость и энергетические резервы дыхательных мышц. Такими показателями являются ЖЕЛ, объем форсированного воздуха за 1 сек. (ОФВ), МВЛ, регистрируемые спирографически.

ЖЕЛ - максимальная амплитуда дыхательных движений зависит от эластических свойств легких и грудной клетки, двух эластических образований, взаимодействующих между собой. По величине ЖЕЛ судят преимущественно об эластических свойствах аппарата вентиляции. Для оценки же другого вида нарушений механики дыхания, ухудшение бронхиальной проводимости, используется проба с форсированным выдохом. Если произошло сужение бронхиального дерева (спазм, отек слизистой и т. д.), то при выдохе воздушный поток встречает повышенное бронхиальное сопротивление. Эти нарушения удается четко выявить при форсированном выдохе. В норме равна 4.5-6л

МОД - Минутный объем дыхания, в условиях основного обмена составляет 4-10 литров в стандартных условиях

Резервные объемы вдоха и выдоха (РОвд., РОвыд.). Резервный объем вдоха в норме составляет сидя 50 (35-65)% ЖЕЛ, лежа 65 (50-82)%, резервный объем выдоха сидя 30 (10-50), лежа 15 (5-25)% ЖЕЛ.

Объем форсированного воздуха за 1 сек (ОФВ I). Скорость форсированного выдоха находится в тесной взаимосвязи от объема легких. Поэтому ограничить ее оценку абсолютными значениями нельзя. Широко принят относительный ОФВ I к объему жизненной емкости легких и выражается в процентах.

На большой скорости

1 мин = 5 см

1 сек = 2 см; h = 200 мл

ЧДД (к-во в 5 см)

ДО МОД=ЧДД х ДО

ЖЕЛ

РО вд.

РОвыд.

ФОВ1

МОС25

МОС50

МОС75 ПОС

Проба Тиффно

ФОВ – форсированный V выдоха за 1 сек.

МОС – max объемная скорость

МОС25 – max объемная скорость – 25% от форсированной ЖЕЛ.

2 см(1сек) ФОВ

25

h 50

Ф ЖЕЛ

75

ПОС – пиковая объемная скорость – точка в начале выдоха.

Проба Тиффно – соответствует ФОВ1(выдоха) / Ф ЖЕЛ N>82%

h

2 см

Проводим касательную к каждой точке.

По табл. Формул Клемента рассчитать.

Рассчитать по таблице все параметры для себя.

По следующей таблице все свои параметры.

Строим касательную к точке – прямая.

В любой точке этой кривой и восстанавливаем перпендикуляр к этой касательной

Выдох МОД 0,25 – из крупных дыхательных путей

МОД 0,5 – средних дыхательных путей

МОД 0,75 – из мелких дыхательных путей.

1. Объем форсированного выдоха за одну секунду (ОФВ1, или FEV1 forced expiratory volume after 1 second) — количество воздуха, удаленного из легких за первую секунду выдоха. Этот показатель уменьшается как при обструкции дыхательных путей (за счет увеличения бронхиального сопротивления), так и при рестриктивных нарушениях (за счет уменьшения всех легочных объемов).

2. Индекс Тиффно (ОФВ1/ФЖЕЛ, %) — отношение объема форсированного выдоха за первую секунду (ОФВ1, или FEV1) к форсированной жизненной емкости легких (ФЖЕЛ, или FVC). Это основной показатель экспираторного маневра с форсированным выдохом. Он существенно уменьшается при обструктивном синдроме, поскольку замедление выдоха, обусловленное бронхиальной обструкцией, сопровождается уменьшением объема форсированного выдоха за 1 с (ОФВ1, или FEV1) при отсутствии или незначительном уменьшении всей ФЖЕЛ (FVC). При рестриктивных расстройствах индекс Тиффно практически не изменяется, так как ОФВ1 (FEV1) и ФЖЕЛ (FVC) уменьшаются пропорционально. В норме 80%.

3. Максимальная объемная скорость выдоха на уровне 25%, 50% и 75% форсированной жизненной емкости легких (МОС25%, МОС50%, МОС75%, или MEF25, MEF50, MEF75maximal expiratory flow at 25%, 50%, 75% of FVC). Эти показатели рассчитывают путем деления соответствующих объемов (в литрах) форсированного выдоха (на уровне 25%, 50% и 75% от общей ФЖЕЛ) на время достижения этих объемов при форсированном выдохе (в секундах).

4. Средняя объемная скорость выдоха на уровне 25–75% от ФЖЕЛ (СОС25–75%, или FEF25–75). Этот показатель в меньшей степени зависит от произвольного усилия пациента и более объективно отражает проходимость бронхов.

5. Пиковая объемная скорость выдоха (ПОСвыд, или PEF — peac expiratory flow) — максимальная объемная скорость форсированного выдоха.

На основании результатов спирографического исследования рассчитывают также: 1) число дыхательных движений при спокойном дыхании (ЧДД, или BF — breathing freguency) и 2) минутный объем дыхания (МОД, или MV — minute volume) — величину общей вентиляции легких в минуту при спокойном дыхании.

В тетради понятнее смотрите там)))

Билет №12.

Соседние файлы в предмете Нормальная физиология