Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гринфельд Г.М. Теория автоматического управления.doc
Скачиваний:
312
Добавлен:
02.05.2014
Размер:
2.22 Mб
Скачать

8.3. Метод гармонической линеаризации нелинейных звеньев

При подаче на вход линейной системы гармонического сигнала

(8.18)

на выходе системы также устанавливается  гармонический сигнал, но с другой амплитудой и смещенный по фазе по отношению  к входному. Если же синусоидальный сигнал подать на вход нелинейного элемента, то на его выходе формируются периодические колебания, но по форме существенно отличающиеся от синусоидальных. В качестве при­мера на рис. 8.17  показан характер изменения выходной переменной нелинейного элемента с релейной ха­рактеристикой (8.14) при поступлении на его вход синусоидальных колебаний (8.18).

 

Разлагая периодический сигнал на выходе нелинейного элемента в ряд Фурье, представляем в виде суммы постоянной составляющей  и бесконечного множества гармонических составляющих:

,                                     (8.19)

где   – постоянные коэффи­циенты ряда Фурье; – частота колебаний пер­вой гармоники (основная частота), равная частоте вход­ных синусоидальных колебаний;Т – период колебания первой гармоники, равный периоду входных синусоидальных колебаний.

Выходной сигнал нелинейного элемента поступает на вход линейной части САУ (см. рис. 8.1), которая, как правило, обладает существенной инерционностью. При этом высокочастотные составляющие сигнала (8.19) практически не проходят на выход системы, т.е. линейная часть является фильтром по отношению к высокочастотным гармоническим состав­ляющим. В связи с этим, а также учитывая, что ампли­туды гармонических составляющих  в уменьшаются с ростом часто­ты гармоники, для приближенной оценки выходной величины нелинейного элемента, в большом числе случаев достаточно учитывать только первую гармониче­скую составляющую в .

Следовательно, при отсутствии постоянной составляю­щей в выходных колебаниях выражение (8.19) прибли­женно можно записать в виде:

.                                             (8.20)

Выражая из формулы (8.20) функцию , а из производной –  функцию , преобразуем выражение (8.20)  следующим образом:

.                                             (8.21)

Таким образом, нелинейная зависимость выходной величины от входной в нелинейном элементе приближен­но заменяется линейной зависимостью, описываемой вы­ражением (8.21).

Выполнив в вы­ражении (8.21) преобразование Лапласа, получим:

Как и для непрерывных звеньев введем в рассмотрение переда­точную функцию нелинейного гармонически линеаризо­ванного элемента, как отношение изображения выходной ве­личины к изображению входной величины:

.                                   (8.22)

Таблица 8.1

Коэффициенты гармонической линеаризации типовых нелинейностей

Статическая характеристика нелинейного элемента

Линейная характеристика с зоной нечувствительности

 

0

Линейная характеристика с ограничением

 

0

Линейная характеристика с зоной нечувствительности и ограничением

 

0

Характеристика «люфт»

Идеальная релейная  характеристика

 

0

Однозначная релейная характеристика с зоной нечувствительности

 

0

Неоднозначная релейная характеристика с зоной нечувствительности

Кубическая парабола:

 

0

Характеристика «петля гистерезиса»

Передаточная функция  нелинейного эле­мента имеет существенное отличие от передаточной функ­ции линейной системы , заключающееся в том, что зависит от амплитуды и частоты входного сигнала.

Выражение (8.22)  запишем в виде:

q(A)+ q1(A), (8.23)

где  q(A),q1(A)– коэффициенты гармонической линеаризации, определяемые как  отношения коэффициентов ряда Фурье для пер­вой гармоники выходных колебаний к амплитуде вход­ных колебаний:

q(A)=q1(A)=.                                             (8.24)

Заменяя в выражении (8.23)  рна , получим выражение длякомплексного коэффициента передачи нелинейного элемента:

q(A)+j q1(A),(8.25)

являющегося аналогом АФХ для линейного звена.

В качестве примера определим выражение для комплексного коэффициента передачи нелинейного элемента с релейной статической характеристикой (8.14). Коэффициенты ряда Фурье A1   и B1 для указанной нелинейности равны:

;

B1 .

Очевидно, что коэффициент B1 будет равен нулю для любого нелинейного элемента с нечетно-симметричной статической нелинейностью.

,                                         (8.26)

где передаточная функция линейной части си­стемы; передаточная функция нелинейного элемента после его линеаризации.

Если , то выражение (8.26)  можно записать в виде:

.                                    (8.27)

Заменяя в выражении (8.27)  рна , по­лучим комплексное выражение, в котором необходимо выделить вещественную и мнимую части:

[ q(A)+j q1(A)] .              (8.28)

При этом условие возникновения периодических колебаний в системе с частотой и амплитудой запишем:

(8.29)

Если решения системы (8.29) комплексные или отрицательные, режим автоколебаний в системе невозможен. Наличие положительных  вещественных решений   для и свидетельствует о наличии в системе автоколебаний, которые необходимо проверить на устойчивость.

В качестве примера найдем условия возникновения автоколеба­ний в САУ, если  передаточная  функция ее линейной части равна:

(8.30)

и нелинейным элементом типа «петля гистерезиса».

Передаточная функция гармонически линеаризованного нелинейного элемента (см. табл. 8.1) имеет вид:

.                                       (8.31)

Подставляя выражения (8.30) и (8.31) в выражение (8.26) и заменяя рна , найдем выражение для :

.

Отсюда в соответствии с выражением (8.29) получаем следующие условия возникновения автоколебаний в системе:

Решение системы уравнений (8.29) обычно затруднительно, так как ко­эффициенты гармонической линеаризации имеют слож­ную зависимость от амплитуды входного сигнала. Кроме того, помимо определения амплитуды и частоты , необходимо оценить устойчивость автоколебаний в системе.

Условия возникновения автоколебаний в нелинейной системе и параметры предельных циклов можно исследо­вать, используя частотные критерии устойчивости, например, критерий устойчи­вости Найквиста. Согласно этому критерию при наличии ав токолебанийамплитудно-фазовая характеристика разомкнутой гармонически линеаризованной системы, равная

=,

проходит через точку (-1, j0). Следовательно, для  и  справедливо равенство:

или

       .                                     (8.32)

Решение уравнения (8.32) относительно частоты и амплитуды автоколебаний можно получить графически. Для этого на комплексной плоскости необходимо, изменяя частоту от 0 до , построить годограф АФХ линейной части системы и, изменяя амплитудуАот 0 до , построить годограф обратной ха­рактеристики нелинейной части , взятый  с знаком «минус». Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует (рис. 8.18, б).

При пересечении годографов (рис. 8.18, а) в системе возникают автоколебания, частота  и амплитуда которых опреде­ляются значениями и в точке пересечения..

Если и -пересекаются в нескольких точках (рис. 8.18, а), то это свидетельствует о наличии в системе нескольких предельных циклов. При этом колебания в системе могут быть устойчивы­ми и неустойчивыми.

Устойчивость автоколебательного режима оценивается следующим образом. Режим автоколебаний устойчив, если точка на годографе нелинейной части , соответствующая амплитуде  большей по сравнению со значением в точке пересечения годографов, не охватывается годографом частотной характеристики линейной части системы. В противном случае автоколебательный режим неустойчив.

На рис. 8.18, а годографы пересекаются в точках 1 и 2. Точка 1 определяет неустойчивый режим автоколебаний, так как точка годографа , соответствующая увеличенной амплитуде, охватывается годографом частотной характеристики линейной части системы. Точке 2 соответствует устойчивый режим автоколебаний, амплитуда которых определяется по годографу  а частота – по годографу .

В качестве примера оценим устойчивость автоколебаний  в двух нелинейных системах. Будем полагать, что передаточные функции линейных частей этих систем совпадают и равны:

,

но входящие в них их нелинейные элементы различны. Пусть в первую систему включен  нелинейный элемент «идеальное реле», описываемый системой  (8.14), а во вторую – нелинейный элемент со статической характеристикой «кубическая парабола». Воспользовавшись данными таблицы 8.1, получим:

                       и                                .

 

На рис. 8.19 изображены годографы  этих систем совместно с годографом АФХ линейной части системы . На основании изложенного можно утверждать, что в первой системе возникают  устойчивые автоколебания с  частотой и амплитудой , а во второй системе автоколебания неустойчивые.