Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 семестр зачет / УЧ ПОС КОЛ и ВОЛ.doc
Скачиваний:
752
Добавлен:
23.02.2015
Размер:
3.4 Mб
Скачать
      1. Резонансные кривые для амплитуды силы тока в контуре, для амплитуды скорости материальной точки в механической системе

Запишем формулу (5.68) для амплитуды силы тока в наиболее удобном виде

,

и исследуем эту зависимость для различных значений .

1. ω=0 : , т.е. постоянный электрический ток через цепь, содержащую конденсатор, не протекает.

2. : .

3. Максимум функции наблюдается тогда, когда подкоренное выражение в знаменателе будет минимальным, т.е. первое слагаемое в подкоренном выражении должно быть равным нулю. Поэтому максимум соответствует частоте , а само максимальное значение будет равно

. (5.74)

На рис. 5.18 приведены резонансные кривые в случае идеального колебательного контура () и для двух разных значений сопротивления в нем (, т.е.) при постоянном значении . Как видно, максимум функции с увеличением уменьшается, а его смещение по оси частотне происходит.

Используя табл. аналогий 5.1, можно записать формулы, описывающие резонансные кривые для амплитуды колебаний скорости тела (м.т.) в механической системе:

, (5.75)

: . (5.76)

График для трех значений коэффициента сопротивления () среды приведены на рис. 5. 18,б. Эти графики аналогичны графикам резонансных кривых .

Рис. 5.18

      1. Разность фаз колебаний между силой тока и напряжениями на конденсаторе, индуктивности и активном сопротивлении колебательного контура. Фазовые резонансные кривые

Перепишем формулы (5.64) для I и в удобном виде

, ,

и добавим к ним формулы для UL и UR:

,.(5.77)

Найдем в соответствии с полученными формулами разность фаз колебаний между силой тока и напряжениями на конденсаторе, индуктивностии активного сопротивления:

, (5.78)

, (5.79)

. (5.80)

Рис. 5.19

Как следует из формул (5.78) – (5.80) фаза колебаний напряжения на конденсаторе отстает по фазе от колебаний тока в цепи на π/2, а фаза колебаний напряжения на катушке опережает фазу колебаний силы тока на π/2. Фазы колебаний напряжения на активном сопротивлении R и силы тока в цепи совпадают. Это наглядно видно на векторной диаграмме, приведенной на рис. 5.19.

На ней указаны амплитуды векторов напряжений на отдельных участках электрической цепи. При этом фаза колебания силы тока в контуре принимается равной нулю, т.е. амплитуда вектора силы тока располагается вдоль оси .

На такой диаграмме вектор амплитуды внешнего напряжения, подаваемого в колебательный контур, можно представить как сумму векторов амплитуд напряжений (,,) на разных его участках. Это позволяет записать следующую формулу для модуля вектора амплитуды внешнего напряжения (например, для частот, рис. 5.20,а):

, (5.81)

из которой с учетом формул (5.19) и (5.20) () можно получить выражение (5.65) для зависимости амплитуды колебания заряда от частоты внешнего напряжения

.

Рис. 5.20

Под фазовыми резонансными кривыми понимают, например, зависимости разности фаз между внешним напряжением и напряжением на конденсаторе, разности фаз между внешним напряжением и силой токаI в контуре от частоты внешнего напряжения. Наиболее интересными из них являются зависимости , так как они позволяют выяснить эффективность поступления энергии в контур (колебательную систему). В соответствии с формулами (5.64) и (5.66) для разности фаз и можно записать

,. (5.82)

Отметим, что разность фаз для цепей переменного тока обозначают буквой : .

На рис. 5.21 приведены фазовые резонансные кривые и, построенные по формулам (5.66) и (5.82) при значениях параметра : .

Рис. 5.21

Из них следует, что внешнее напряжение опережает по фазе напряжение на конденсаторе на угол . На векторной диаграмме это означает, что вектор амплитуды располагается выше вектора амплитуды(рис. 5.20 а,б,в). Причем угол изменяется от нулевого значения для частоты , равной нулю (), до значения равного при частоте внешнего напряжения стремящегося к бесконечности (, рис. 5.21,а). При резонансе амплитуды векторов внешнего напряжения и напряжения на конденсаторевзаимно перпендикулярны (см. рис. 5.20,б), что приводит к разности фаз между ними, равной (, Рис. 5.21,а).

Из другой фазовой резонансной кривой следует, что фаза внешнего напряжения для частот отстает от фазы тока в контуре на угол (рис.5.21,б). Для частот фаза внешнего напряжения опережает на угол фазу колебаний силы тока в контуре и при увеличении частоты стремится к значению, равному . При резонансе (,.) фаза колебаний силы тока и внешнего напряжения совпадают, т.е. и вектора амплитуд инаправлены одинаково, вдоль оси(рис. 5.21,б).

При этом энергия поступает в контур согласованно с колебаниями в ней. Действительно, учитывая выполнение условий малого затухания (Q >>1) и формулы (5.64) и (5.66) запишем

: ;

, .

Такое поступление энергии в контур при резонансе приводит к большим амплитудам колебаний, их числовые значения определяются диссипацией (рассеянием) энергии системы, т. е. коэффициентом затухания (формула (5.70)).

При частотах , больших или меньших () амплитуда вынужденных колебаний даже в отсутствии диссипации энергии () будет уменьшаться, она определяется расстройкой резонанса (), т.е. разностью частот и.

Можно отметить, что с использованием таблицы аналогий можно построить фазовые резонансные кривые для разности фаз между скоростью колебаний тела и действующей на него внешней силой в случае механической системы и т.д.