Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
полные лекции.docx
Скачиваний:
79
Добавлен:
17.09.2019
Размер:
5.97 Mб
Скачать

2.5. Выражение для геометрического параметра цилиндрической ак­тивной зоны.

Это выражение получается путём решения волно­вого уравнения. После преобразований полу­чается:

Bг2 = (/H')2 + (2.405/R')2

Как видим, геометрический параметр имеет размерность см-2, а его величина обратно пропорциональна квадрату линейных размеров активной зоны реактора.

О величине геометрического параметра говорят такие цифры:

- для реактора космической спутниковой электростанции (R' 6 см, H'~ 11 см) величина Вг2  0.2422 см-2;

- для реактора морского атомохода (R'  50 см, H'  100 см) Вг2  3.3 10-3 см-2;

- для реактора ВВЭР-1000 (R' = 158 см, H' = 355 см) Вг2 = 3.1 10-4 см-2;

- для реактора РБМК-1000 (R' = 590 см, H' = 700 cм) Вг2 = 3.7 10-5 см-2.

Падающий характер изменения величины Вг2 с ростом линейных разме­ров активной зоны позволяет качественно разрешить вопрос о соотношении величин геометрического и материального параметров в некритических ре­акторах (в критических реакторах, как уже отмечалось, Вг2 = Вм2).

Величина материального параметра для любого реактора определяется только составом материалов, входящих в его активную зону. Следователь­но, для гетерогенного реактора, активная зона которого состоит из одинаковых ячеек, величина материального параметра для всей активной зоны уже определена составом материалов одиночной ячейки: ведь соотношение материалов в одиночной ячейке и во всей активной зоне, составляемой из определённого числа таких ячеек, одинаково. Значит, величина материаль­ного параметра от числа размещаемых в его активной зоне ячеек не зависит и в процессе загрузки топливных ячеек в активную зону не меняется.

Теперь представим себе процесс загрузки активной зоны и доведения её до критического состояния: в загруженный замедлителем реактор вна­чале вставляется центральная ТВС, затем вокруг неё размещается первый слой из 6 таких же ТВС, затем последовательно ставятся на свои места 12 ТВС второго слоя, затем - 18 ТВС третьего слоя и т.д., - до тех пор, по­ка не будет набрано критическое количество ТВС, при котором в активной зоне начинается самоподдерживающаяся цепная реакция деления.

Ясно, что в процессе доведения активной зоны до критического со­стояния растёт радиус набора активной зоны, а значит, величина геомет­рического параметра:

Bг2 = (/H')2 + (2.405/R')2

в процессе набора критической массы будет уменьшаться. И когда активная зона достигнет критичности, величина геометрического параметра снизится до величины материального параметра.

Таким образом, в подкритическом реакторе величина геометрического параметра больше величины материального параметра, а в надкритическом (который получился бы, если бы в активную зону добавили еще одну ТВС сверх критического их количества) - наоборот - величина материального параметра стала бы больше величины геометрического параметра.

2.6. Оптимальное соотношение размеров цилиндрической активной зоны.

Из всего сказанного в принципе должно быть ясно, как рассчиты­вать критические размеры активной зоны цилиндрического гомогенного ре­актора по заданному составу материалов его активной зоны:

а) по составу материалов активной зоны рассчитать величины их эф­фективных микросечений и средних макросечений для всей среды активной зоны;

б) рассчитать , , , , т и L2, то есть получить k, т и L2;

в) методом последовательных приближений решить уравнение критич­ности реактора

k exp(-B2т)/(1 + B2L2) = 1

относительно величины В2, являющейся в критическом реакторе и ма­териальным, и геометрическим параметром;

г) подставляя найденную величину В2 в её выражение:

(/H')2 + (2.405/R')2 = B2, (*)

можно было бы искать экстраполированные критические размеры ак­тивной зоны реактора (Н' и R'), но одно уравнение с двумя неизвестными имеет бесчисленное множество пар решений. Иными словами, одному и тому же значению В2 удовлетворяют и блинообразные активные зоны (с малым отношением Н'/R'), и, наоборот, колоннообразные активные зоны (с большим отношением Н'/R').

Следовательно, для получения определённого решения уравнения (6.4.11) необходимо задаться величиной соотношения размеров активной зоны (Н'/R'). Из каких соображений?

- Из соображений экономии нейтронов: из стремления при данной ве­личине объёма активной зоны сделать минимальной утечку тепловых нейт­ронов. При одинаковой плотности тока утечки тепловых нейтронов по всей поверхности активной зоны решение задачи на минимум утечки сводится к решению задачи на минимум поверхности цилиндрической активной зоны при заданном ее объёме. Это имеет место при соотношении (Н'/R') = 2, то есть когда высота цилиндра равна его диаметру.

Но на цилиндрической части поверхности активной зоны градиент плот­ности потока тепловых нейтронов получается немного выше, чем на плос­ких поверхностях верхнего и нижнего торцов активной зоны, а, значит, величины плотности тока утечки тепловых нейтронов на цилиндрической поверхно­сти будут выше, чем на плоских торцах.

Поэтому для нахождения минимально-возможной общей утечки тепловых нейтронов из активной зоны необходимо решать задачу на экстремум для величины общего тока утечки тепловых нейтронов через всю поверхность активной зоны (S):

Jобщ =  J(S) dS

(S)

Решение этой задачи дает оптимальное соотношение размеров цилинд­рической активной зоны

(H'/R')opt = 1.948

по соображениям экономии тепловых нейтронов в активной зоне.

Цилиндрические активные зоны с (Н'/R')<1.948 принято называть уп­лощёнными (т.е. более плоскими по сравнению с активными зонами с опти­мальным соотношением размеров), а зоны с (H'/R')>1.948 - удлинёнными.

Например, активная зона РБМК-1000 (Наз = 7м, Dаз = 11.8 м) характеризу­ется отношением Н'/R'  1.19, т. е. является сильно уплощённой, а ак­тивная зона ВВЭР-1000 (Наз = 3.55 м, Rаз =1.58 м, Н'/R'  2.25) - является явно сильно удлинённой. В той и другой активных зонах экономия тепло­вых нейтронов оказалась принесённой в жертву иным соображениям.

В ВВЭР-1000 уменьшение отношения Н'/R' привело бы к увеличению ди­аметра активной зоны за счёт сокращения её высоты, а вместе с этим - и к увеличению диаметра корпуса реактора, а, значит, - к увеличению тол­щины стенки корпуса (корпус - сосуд, работающий под большим давлением), материалоёмкости реактора и к увеличению его стоимости. Именно поэтому (главным образом) активная зона ВВЭР-1000 выполнена удлинённой.

У РБМК-1000 (канального реактора) таких проблем нет: активная зона находится под незначительным давлением азотно-гелиевой смеси, охлаждаю­щей графитовую кладку; высокое давление имеет место только внутри труб технологических каналов; уменьшение высоты активной зоны (или высоты технологических каналов) за счёт увеличения диаметра активной зоны оказывается даже благотворным делом: с точки зрения укорочения технологических каналов и увеличения численности параллельно работающих каналов, при котором снижается гид­равлическое сопротивление активной зоны, а, значит, - и энергетические затраты на циркуляцию теплоносителя в контуре МПЦ.