Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диссертация на соискание учёной степени.doc
Скачиваний:
35
Добавлен:
22.02.2015
Размер:
41.76 Mб
Скачать

3.2.3 Зависимость конформационного потенциала от параметра электронно-конформационного взаимодействияа

Выбор интервала значений параметра а, характеризующего электронно-конформационное взаимодействие, а также изучение влияния этого параметра на форму потенциала (2.4) необходимы для успешного проведения компьютерных экспериментов.

При анализе влияния параметра а на свойства КП выбирался случай при , который соответствует условиям глобального минимума закрытого состояния канала. При этом значенииp построены конформационные потенциалы при различных значениях параметра а и при К=12 (рис. 3.8).

Как видно из графика, при а < 2 минимум правой ветви КП лежит левее точки пересечения ветвей КП, а это означает отсутствие локального минимума, отвечающего за открытое состояние RyR-канала.

Необходимо оценить интервал значений параметра а, при котором наблюдается стабильность правого локального минимума потенциала. Это условие выполняется в том случае, когда минимум находится правее точки пересечения ветвей потенциала. Данная точка имеет координаты (0;0). Правый минимум имеет координаты (;), вследствие чего должно выполняться неравенство:>0.

Отсюда следует, что при минимальном значении параметра р=-1 безразмерный параметр а должен принимать значение больше 2. При проведении численных экспериментов, приведенных в данной работе, параметр а принимался равным 5.

Как видно из рисунка 3.8, расстояние между минимумами КП увеличивается с ростом а, вследствие этого уменьшается время релаксации канала из одного локального минимума КП в другой (trelax) (рис. 3.9).

3.3 Стохастическая динамика RyR-канала. Быстрые переходы

При проведении численных экспериментов с достаточно большой длительностью, исследуя стохастическую динамику RyR-канала, можно пренебречь медленной конформационной динамикой. Быстрые электронные и туннельные переходы можно описать в рамках традиционной марковской схемы, имеющей ряд преимуществ. Во-первых, марковские схемы обладают достаточной простотой математического аппарата; во-вторых, алгоритмы численной реализации являются быстрыми, и с помощью них можно оценить средние времена пребывания канала в открытом, закрытом и инактивационном состояниях при различных значениях интенсивностей электронных и туннельных переходов.

В связи с тем, что в ЭК-модели электронные переходы связаны с взаимодействием ионов Са2+ с активными центрами RyR-канала, можно

В связи с тем, что в ЭК-модели электронные переходы связаны с взаимодействием ионов Са2+ с активными центрами RyR-канала, можно

Как и на рисунке 2.7, введено обозначение A – активационный центр, I – инактивационный центр канала. Знаком * обозначена связанность ионов Са2+ с тем или иным центром, например, A*I означает то, что активационный центр канала заполнен ионами Са2+, а инактивационный – нет.

В терминах аппарата марковских цепей, были введены четыре основных состояния:

  • правая ветвь параболы:AI – закрытое состояние;

  • левая ветвь параболы:A*I – открытое состояние;

  • левая часть инактивационного уровня I: AI* – инактивационное состояние I1;

  • правая часть инактивационного уровня I: A*I* – инактивационное состояние I2.

Применяя схему, представленную ранее на рисунке 2.5, и пренебрегая на больших интервалах времени, переходные процессы:

, (3.10)

где ,,,и– интенсивности переходов. Как и на рисунке 2.7,AI соответствует закрытому (С), A*I – открытому состоянию канала (О). AI* и A*I* – инактивационному состоянию (и, соответственно,).

Изменение вероятностей пребывания в различных состояниях от времени описывается с помощью системы дифференциальных уравнений (уравнения Колмогорова):

, (3.11)

где – вероятности пребывания в том или ином состоянии.

Зависимости вероятности пребывания канала в различных состояниях от времени являются решениями системы (3.11). Исследование решений системы (3.11) позволит оценить значения вероятностей электронных и туннельных переходов RyR-канала, что необходимо для проведения численных экспериментов.