Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТАУ.Конс.лек.Ч.2,Раз.2,3,4.2009.doc
Скачиваний:
136
Добавлен:
11.05.2015
Размер:
6.91 Mб
Скачать

2.7.2.Теоремы Ляпунова

Кроме определений Ляпуновым были разработаны два метода анализа устойчивости решений дифференциальных уравнений.

Суть первого метода заключается в замене нелинейной системы (2.70) линейной (линеаризованной) путем разложения правых частей уравнений (2.70) в ряды Тейлора относительно начала координат и отбрасывания всех нелинейных членов. В результате получаются линейные уравнения (уравнения первого приближения)

,, (2.71)

где − постоянные коэффициенты.

Ляпуновым доказана следующая основная теорема первого метода, которую приведем в упрощенной форме: если линейная система (2.71) асимптотически устойчива, то положение равновесия нелинейной системы (2.70) будет асимптотически устойчивым в малом, если система (2.71) неустойчива, то положение равновесия (2.70) будет неустойчивым.

По первому методу, исключая так называемые критические случаи, задача анализа устойчивости нелинейной системы сведена к более простой задаче анализа линейной системы. Первый метод Ляпунова не позволяет исследовать устойчивость в большом, целом или абсолютную устойчивость. Для этих целей Ляпуновым был разработан второй метод или прямой метод анализа устойчивости.

Введем в рассмотрение непрерывную функцию переменных, такую, чтопри,, т.е. обращающуюся обязательно в ноль в начале координат.

Если в некоторой области переменных функцияили, то ее называютзнакоопределенной: соответствен положительно определенной или отрицательно определенной. Если функция сохраняет свой знак, но может обращаться в ноль не только в начале координат, то ее называютзнакопостоянной (положительной или отрицательной). Такие функции в дальнейшем будем называть функциями Ляпунова. Примеры функций: − положительно определенная;− отрицательно определенная; − знакопостоянная функция (положительная).

Наконец, функция называетсязнакопеременной, если в рассматриваемой области она меняет свой знак. Например, .

Приведем три основные теоремы Ляпунова второго метода.

1. Если для системы уравнений (2.70) существует знакоопределенная функция , производная которойявляется знакопостоянной противоположного знака, то решениеустойчиво.

2. Если в предыдущем случае производная будет знакоопределенной, но противоположного знака, то решениебудет устойчивым асимптотическим.

3. Если для системы уравнений (2.70) существует функция , производная которойявляется знакоопределенной функцией, причем в любой сколь угодно малой окрестности начала координат, имеется область, в которой знакиисовпадают, то решениесистемы (2.70) неустойчиво.

Отметим, что приведенные в теоремах условия являются только лишь достаточными и эффективность их будет зависеть от выбранной функции Ляпунова . Не существует в общем случае методик выбора функций Ляпунова, дающих необходимые и достаточные условия.

Довольно часто в качестве функций Ляпунова используют квадратичные формы, для которых, используя известные критерии, можно сравнительно легко определять их знак.

2.7.3. Абсолютная устойчивость

Рассмотрим понятие абсолютной устойчивости применительно к структуре нелинейной системы рис. 2.2.

Уравнения, описывающие поведение системы при имеют в соответствии с [8] вид

(2.72)

Будем полагать, что , тогда уравнения имеют тривиальное решение,,, т.е. в системе существует положение равновесия, устойчивость которого будем исследовать.

Если положение равновесия системы (2.72) асимптотически устойчиво в целом при любом виде функции из заданного класса, то САУ называетсяабсолютно устойчивой в этом классе.

Будем рассматривать класс функций , удовлетворяющих секторным ограничениям, т.е. с характеристикой, построенной на плоскости, которая полностью укладывается в угловом секторе, образованном двумя прямымии,.

Итак, рассматривается класс нелинейных функций, удовлетворяющих условиям

для,. (2.73)

При этом вид функции неизвестен, а нелинейность будет относиться к классу. Возможны также дополнительные ограничения, например, функциядолжна быть непрерывной или другие.

Из класса (2.73) выделяют два подкласса: и,.

Анализ абсолютной устойчивости возможен с помощью функций Ляпунова, а также частотных критериев абсолютной устойчивости. Рассмотрим последние как наиболее практичные.

Круговой критерий устойчивости.

Для нелинейностей из класса достаточным условием абсолютной устойчивости является выполнение неравенства

, (2.74)

где ,,− АФЧХ линейной части системы (рис. 2.2).

Неравенство (2.74) определяет область на комплексной плоскости, в которой должна лежать АФЧХ линейной части системы, чтобы нелинейная система была абсолютно устойчива.

Заменяя в (2.74) знак неравенства на знак равенства, получим границу этой области. Это будет уравнение окружности с центром на вещественной оси в точке и проходящей через точкиина оси. Неравенство (2.74) требует, чтобы АФЧХ при всехрасполагалась вне круга, ограниченного этой окружностью. На рис. 2.20 приведены запретные области (заштрихованные) для характеристикии характеристики.

Рис. 2.20

В [4] даются более подробные случаи для разных классов .

Вторым распространенным частотным критерием является критерий В.М. Попова. Рассмотрим его формулировку для класса нелинейных характеристик : система будет абсолютно устойчивой для нелинейностей из класса, если через точкуможно провести прямую так, что она не пересечет модифицированную частотную характеристику (последняя лежит справа от прямой).

В этом критерии под модифицированной частотной характеристикой понимается характеристика , где,.

Рис. 2.21, а удовлетворяет критерию абсолютно устойчивой системы, а рис. 2.21, б при заданном не удовлетворяет этому критерию.

Рис. 2.21

В заключение отметим, что все критерии абсолютной устойчивости, в том числе частотные, дают только лишь достаточные условия абсолютной устойчивости.