Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Косицкий Г.И. Физиология человека.docx
Скачиваний:
203
Добавлен:
20.05.2015
Размер:
2.66 Mб
Скачать

Гемоглобин 68000

Альбумин 69000

-Липопротеин

Гамма-глобулин 90000

1300000

Фибриноген 400000

, 10 ммкм Na CL Глюкоза

(3, -глобулин

(улипопротеин 200000

Рис. III. Молекулярная масса, сравнительные размеры и форма белковых молекул крови.

Несмотря на свою малую величину, онкотическое давление играет решающую роль в обмене воды между кровью и тканями. Оно влияет на процессы образования тканевой жидкости, лимфы, мочи, всасывания воды в кишечнике. Крупные молекулы белков плаз­мы, как правило, не проходят через эндотелий капилляров. Оставаясь в кровотоке, они удерживают в крови некоторое количество воды (в соответствии с величиной их онкотиче- ского давления).

При длительной перфузии изолированных органов растворами Рингера или Рингера- Локка наступает отек тканей. Если заменить физиологический раствор кристаллоидов кровяной сывороткой, то начавшийся отек исчезает. Именно поэтому в состав кровезаме- щающих растворов необходимо вводить коллоидные вещества. При этом онкотическое давление и вязкость подобных растворов подбирают так, чтобы они были равны этим параметрам крови.

СВЕРТЫВАНИЕ КРОВИ

Жидкое состояние крови и замкнутость (целостность) кровеносного русла являются необходимыми условиями жизнедеятельности. Эти условия создает система свертывания крови (система гемокоагуляции),сохраняющая циркулирующую кровь в жидком состоя­нии и восстанавливающая целостность путей ее циркуляции посредством образования кровяных тромбов (пробок, сгустков) в поврежденных сосудах.

В систему гемокоагуляции входит кровь и ткани, которые продуцируют, используют и выделяют из организма необходимые для данного процесса вещества, а также нейро- гуморальный регулирующий аппарат.

Знание механизмов свертывания крови необходимо для понимания причин ряда заболеваний и возникновения осложнений, связанных с нарушением гемокоагуляции. В настоящее время более 50 % людей умирает от болезней, обусловленных нарушением свертывания крови (инфаркт миокарда, тромбоз сосудов головного мозга, тяжелые кро­вотечения в акушерской и хирургической клиниках и др.).

Основоположником современной ферментативной теории свертывания кровиявляет­ся профессор Дерптского (Юрьевского, а ныне Тартуского) университета А. А. Шмидт (1872). Его теорию поддержал и уточнил П. Моравиц (1905).

За столетие, прошедшее после создания теории Шмидта-Моравица, она была значи­тельно дополнена. Сейчас считают, что свертывание крови проходит 3 фазы: 1) образова­

ние протромбин азы, 2) образование тромбина и 3) образование фибрина. Кроме них, выделяют предфазу и послефазу гемокоагуляции. В предфазу осуществляется сосудисто- тромбоцитарный гемостаз (этим термином называют процессы, обеспечивающие оста­новку кровотечений), способный прекратить кровотечение из микроциркуляторных сосу­дов с низким артериальным давлением, поэтому его называют также микроциркуля- торным гемостазом. Послефаза включает в себя два параллельно протекающих процес­са — ретракцию (сокращение, уплотнение) и фибринолиз (растворение) кровяного сгу­стка. Таким образом, в процесс гемостаза вовлечены 3 компонента: стенки кровеносных сосудов, форменные элементы крови и плазменная ферментная система свертывания плазмы.

ПЛАЗМЕННЫЕ ФАКТОРЫ СВЕРТЫВАНИЯ КРОВИ

Международный комитет по номенклатуре факторов свертывания крови обозначил плазменные факторы римскими цифрами в порядке их хронологического открытия.

Фактор I—фибриноген— представляет собой самый крупномолекулярный белок плазмы, образуется в печени, его концентрация в крови составляет 200—400 мг %. При свертывании крови фибриноген из состояния золя переходит в гель — фибрин, образую­щий основу кровяного сгустка. Содержание фибриногена резко возрастает при беремен­ности, в послеоперационном периоде, при всех воспалительных процессах и инфекцион­ных заболеваниях. Во время менструации, а также при болезнях печени его концентрация уменьшается. Кроме участия в гемостазе, фибрин служит структурным материалом для заживления ран.

Фактор II —протромбин— является глюкопротеидом, образуется клетками печени при участии витамина К-

Факгор III—тканевый тромбопластин— по своей природе представляет собой фосфолипид и входит в состав мембран всех клеток организма, в том числе эндотелия сосудов. Он необходим для образования тканевой протромбиназы.

Фактор IV— кальций— содержится в крови наполовину в виде ионов и наполовину в виде комплексов с белками плазмы. В свертывании участвуют лишь ионы Са2+, которые необходимы для всех фаз свертывания крови. Кровь доноров предохраняют от свертыва­ния путем связывания ионов Са2+различными стабилизаторами (например, цитратом натрия).

Факторы V и VI — проакцелерин и акцелерин.Их вместе называют акцелератор-гло- булин (Ас-глобулин). Эти вещества представляют неактивную и активную форму одного и того же фактора, поэтому термин «фактор VI» не применяют. Фактор V образуется в печени, участвует в 1 -й и 2-й фазах гемокоагуляции.

Фактор VI-I — конвертин— синтезируется в печени при участии витамина К, тре­буется для образования тканевой протромбиназы.

Фактор VIII —антигемофилъный глобулин А (АГГ)— необходим для формирова­ния кровяной протромбиназы. Его генетический дефицит служит причиной гемофилии А, протекающей с тяжелыми кровотечениями.

Фактор IX—фактор Кристмаса, или антигемофилъный глобулин В— образуется в печени в присутствии витамина К, требуется в I фазе гемокоагуляции. При его генетиче­ском дефиците наблюдается гемофилия В.

Фактор X— фактор Стюарта-П pay эра— назван, как и предыдущий, по фамилиям больных, у которых впервые обнаружен дефицит этого соединения. Синтезируется в пече­ни при участии витамина К, участвует в формировании и входит в состав тканевой и кровяной протромбиназ.

Фактор XI — плазменный предшественник тромбопластина (РТА)— образуется в присутствии витамина К в печени, требуется для образования кровяной протромбиназы, где он активирует фактор IX. Дефицит фактора XI служит причиной гемофилии С.

Фактор XII — фактор Хагемана— активируется при контакте с чужеродной поверх­ностью (например, местом повреждения сосуда), поэтому его называют также контакт - ным фактором. Фактор XII является инициатором образования кровяной протромбиназы и всего процесса гемокоагуляции. После активации он остается на поверхности повреж­денного сосуда, что предупреждает генерализацию свертывания крови. Объектом дей­ствия фактора Хагемана является фактор XI, с которым он образует комплекс — продукт контактной активации. Кроме системы гемокоагуляции, фактор XII активизирует калли- креинкиновую систему, систему комплемента и фибринолиз. Генетический дефицит этого фактора служит причиной болезни Хагемана.

Фактор XIII —фибринстабилизирующий(фибриназа, фибринолигаза, трансглута- миназа) — содержится в плазме, клетках крови и в тканях. По химической структуре фибриназа является гликопротеидом, синтезируется в печени и при свертывании пол­ностью потребляется. Фактор XIII необходим для образования окончательного или нерастворимого фибрина «I». Действие фибриназы сводится к образованию ковалент- ных пептидных связей между соседними молекулами фибрин-полимера, после чего фибрин становится механически прочным и устойчивым к фибринолизу. Фактор XIII активируется тромбином и ионами Са2+. При врожденном дефиците фибриназы резко ухудшается заживление бытовых и хирургических ран, что говорит о необходимости этого фактора для регенерации.

ФАКТОРЫ СВЕРТЫВАНИЯ ФОРМЕННЫХ ЭЛЕМЕНТОВ

КРОВИ И ТКАНЕЙ

В гемостазе участвуют все клетки крови и особенно тромбоциты.

Тромбоциты— бесцветные двояковыпуклые образования диаметром от 0,5 до 4 мкм, т.е. они в 2—8 раз меньше эритроцитов. В крови здоровых людей содержится 200—400- 109/л тромбоцитов (200 000—400 000 в 1 мкл). Они образуются в костном мозге из мега- кариоцитов. Из одной такой клетки формируется 3000—4000 кровяных пластинок. Про­должительность жизни последних составляет 8—12 су т. Имеются суточные колебания количества тромбоцитов: днем их больше, чем ночью. Их число изменяется при эмоциях, физической нагрузке, после еды. При прилипании тромбоцитов к поврежденным сосудам они образуют 2—10 отростков, за счет которых и происходит прикрепление.

Химический состав тромбоцитов очень сложен. Они содержат набор ферментов, адреналин, норадреналин, лизоцим, мною АТФ и фермент АТФ-азу, функцию которою выполняет сократитель­ный белок кровяных пластинок тромбосгенин.

В последние годы в тромбоцитах обнаружено мною специфических соединений, участвующих в свертывании крови. Их называют тромбоцитарными (пластиночными) факторами и нумеруют арабскими цифрами.

Одним из наиболее важных тромбоцитарных соединений является фактор 3 —тромбоцитар- ный тромбопластин, или тромбопластичесшй фактор. Он представляет собой фосфалипид и нахо­дится в мембране кровяных пластинок и их гранул. Этот фактор освобождается после разрушения тромбоцитов и используется в I фазе свертывания крови.

Фактор 4 — антигепариновый — связывает гепарин и таким путем ускоряет процесс гемоко­агуляции.

Фактор 5 — свертывающий фактор, или фибриноген, определяет адгезию (клейкость) и агре­гацию (скучивание) тромбоцитов.

Фактор 6 — тромбостенин — обеспечивает уплотнение и сокращение кровяного сгустка. По своим свойствам он напоминает актомиозин скелетных мышц, состоит из субъединиц А и М, подоб­ных актину и миозину. Будучи АТФ-азой, тромбостенин сокращается за счет энергии расщепляемой им АТФ.

Фактор 10 — сосудосуживающий — представляет собой серотонин, который адсорбируется тромбоцитами из крови. Это соединение суживает поврежденные сосуды и уменьшает кровопотерю.

Фактор 11 — фактор агрегации — по химической природе является АДФ и обеспечивает ску­чивание тромбоцитов в поврежденном сосуде. Помимо АДФ, эту же задачу выполняет недавно обнаруженный тромбоксан, который является самым мощным стимулятором агрегации. В эндотелии сосудов находится простациклин — самый мощный ингибитор агрегации. Баланс между этими веще­ствами определяет скучивание кровяных пластинок.

Кроме участия в гемостазе, тромбоциты осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки. Они поглощаются клетками эндотелия, доставляя им находящиеся в тромбоцитах макромолекулы. На эти цели ежедневно расходуется около 15 % цирку­лирующих в крови тромбоцитов. Без взаимодействия с тромбоцитами эндотелий сосудов подвер­гается дистрофии и начинает пропускать через себя эритроциты.

В гемостазе участвуют эритроциты.Их форма удобна для прикрепления нитей фиб­рина, а их очень пористая поверхность катализирует процесс гемокоагуляции. В эритро­цитах найдены почти все факторы, которые содержатся в тромбоцитах, за исключением тромбостенина.

Лейкоцитыимеют в своем составе тромбопластический и антигепариновый факторы, естественные антикоагулянты (гепарин базофилов), активаторы фибринолиза. Число лейкоцитов по сравнению с эритроцитами невелико, поэтому их роль в гемостазе у здоро­вых людей незначительная.

Вокруг всех форменных элементов крови имеется «плазматическая атмосфера», из адсорбированных плазменных факторов свертывания, что способствует процессу гемоко­агуляции.

Весьма существенную роль в гемостазе играют ткани, особенно стенки сосудов.

Все ткани и органы содержат очень активный тромбопластин (фосфолипиды клеточных мем­бран), антигепариновый фактор, естественные антикоагулянты, соединения, подобные плазменным факторам Y, YII, X и XIII, вещества, вызывающие адгезию и агрегацию тромбоцитов, активаторы и ингибиторы фибринолиза. При повреждении сосудов и прилежащих тканей все эти вещества контактируют с кровью и активно участвуют в ее свертывании и последующем фибринолизе.

Наибольшей активностью среди факторов свертывания крови, находящихся в тканях, обладает тромбопластин. Он сохраняет свое действие после разведения экстрактов в 5000-500 000 раз. Акти­ваторы фибринолиза прекращают свое влияние после разведения экстрактов тканей в 10—100 раз. Поэтому при проникновении в кровоток тканевой жидкости под влиянием тканевого тромбопластина всегда развивается внутрисосудистое свертывание крови с последующими кровотечениями — тромбогеморрагический синдром (ТГС).

СОСУДИСГО-ТРОМБОЦИТАРНЫЙ ГЕМОСТАЗ

Этот механизм способен самостоятельно прекратить кровотечение из наиболее часто травмируемых микроциркуляторньгх сосудов с низким артериальным давлением. Он складывается из ряда последовательных процессов:

  1. Рефлекторный спазм поврежденных сосудов.Эта реакция обеспечивается сосу до суживающими веществами, освобождающимися из тромбоцитов (серотонин, адрена лин, норадреналин). Спазм приводит лишь к временной остановке или уменьшению кро вотечения.

  2. Адгезия тромбоцитов(приклеивание) к месту травмы. Данная реакция связана с изменением отрицательного электрического заряда сосуда в месте повреждения на положительный. Отрицательно заряженные тромбоциты прилипают к обнажившимся волокнам коллагена базальной мембраны. Адгезия тромбоцитов обычно завершается за 3—10 с.

3. Обратимая агрегация (скучивание) тромбоцитов.Она начинается почти одно­временно с адгезией., Главным стимулятором этого процесса являются «внешняя» АДФ, выделяющаяся из поврежденного сосуда, и «внутренняя» АДФ, освобождающаяся из тромбоцитов и эритроцитов. Образуется рыхлая тромбоцитарная пробка, которая пропу­скает через себя плазму крови.

4. Необратимая агрегация тромбоцитов(при которой тромбоцитарная пробка стано­вится непроницаемой для крови). Эта реакция возникает под влиянием тромбина, изме­няющего структуру тромбоцитов («вязкий метаморфоз» кровяных пластинок). Следы тромбина образуются под влиянием тканевой тромбиназы, которая появляется через 5—10 с после повреждения сосуда. Тромбоциты теряют свою структурность и сливаются в гомогенную массу. Тромбин разрушает мембрану тромбоцитов, и их содержание осво­

бождается в кровь. При этом выделяются все пластиночные факторы и новые количества АДФ, увеличивающие размеры тромбоцитарного тромба. Освобождение фактора 3 дает начало образованию тромбоцитарной протромбиназы — включению механизма коагуля- ционного гемостаза. На агрегатах тромбоцитов образуется небольшое количество нитей фибрина, в сетях которого задерживаются эритроциты и лейкоциты.

5. Ретракция тромбоцитарного тромба— его уплотнение и закрепление в поврежден­ных сосудах за счет сокращения тромбостенина. В результате образования тромбоцитар­ной пробки кровотечение из микроциркуляторных сосудов, чаще всего повреждаемых при бытовых травмах (ссадины, порезы кожи), останавливается за несколько минут.

КОАГУЛЯЩОННЫЙ ГЕМОСТАЗ

Сосудисто-тромбоцитарные реакции обеспечивают гемостаз лишь в микроцир­куляторных сосудах с низким кровяным давлением. Они же начинают гемостаз и в круп­ных сосудах, однако тромбоцитарные тромбы не выдерживают высокого давления и вымываются. В таких сосудах гемостаз может быть достигнут путем образования фибри- нового тромба, представляющего собой более прочную пробку. Его образование осуще­ствляется ферментативным коагуляционным механизмом, протекающим в 3 фазы.

Схема 1 Ноагуляционный гемостаз Повреждение сосуда

I }

Разрушение тромбоцитов и эритроцитов

.. I

Тканевый Тромбоцитарный и

тромбопластин эритроцитарный

(фосфолипиды) тромбопластин

(фосфолипиды)

XII+XI |

IX+VIIUGa 2*

X + V + Ca

-V||+Ca2* -V

Кровяная протромбиназа

Тианевая протромбиназа

XV Са*' ♦ * ♦

Тромбин

Протромбин

Са

XIII