Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Косицкий Г.И. Физиология человека.docx
Скачиваний:
203
Добавлен:
20.05.2015
Размер:
2.66 Mб
Скачать

Осциллограф

Рис. 12. Раздражение и отведение потенци­алов через внутриклеточные микроэлектро­ды. Объяснение в тексте.

'ис. II. Ветвление тока в ткани при раздра­жении через наружные (внеклеточные) лектроды (схема).

Мышечные волокна заштрихованы, между ни- н — межклеточные щели.

зз

2 Физиология человека

Механизм раздражающего действия тока при всех видах стимулов в принципе оди- тков, однако в наиболее отчетливой форме он выявляется при использовании постоян- юго тока.

ДЕЙСТВИЕ ПОСТОЯННОГО ТОКА НА ВОЗБУДИМЫЕ ТКАНИ

Полярный закон раздражения

При раздражении нерва или мышцы постоянным током возбуждение возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания — только под анодом. Эти факты объединяют под названием полярного закона раздраже­ния, открытого Пфлюгером в 1859 г. Полярный закон доказывается следующими опы­тами. Умерщвляют участок нерва под одним из электродов, а второй электрод уста­навливают на неповрежденном участке. Если с неповрежденным участком сопри­касается катод, возбуждение возникает в момент замыкания тока; если же катод устанавливают на поврежденном участке, а анод — на неповрежденном, возбуждение возникает только при размыкании тока. Порог раздражения при размыкании, когда возбуждение возникает под анодом, значительно выше, чем при замыкании, когда возбуждение возникает под катодом.

Изучение механизма полярного действия электрического тока стало возможным только после того, как был разработан описанный метод одновременного введения в клетки двух микроэлектродов: одного — для раздражения, другого — для отведения по­тенциалов. Было установлено, что потенциал действия возникает только в том случае, если катод находится снаружи, а анод — внутри клетки. При обратном расположении полюсов, т. е. наружном аноде и внутреннем катоде, возбуждения при замыкании тока не возникает, как бы силен он ни был.

Прохождение через нервное или мышечное волокно электрического тока прежде всего вызывает изменения мембранного потенциала.

В области приложения к поверхности ткани анода положительный потенциал на наружной стороне мембраны возрастает, т. е. происходит гиперполяризация, а в том случае, когда к поверхности приложен катод, положительный потенциал на наружной стороне мембраны снижается — возникает деполяризация.

На рис. 13, а показано, что как при замыкании, так и при размыкании тока изменения мембранного потенциала нервного волокна не возникают и не исчезают мгновенно, а плавно развиваются во времени.

Объясняется это тем, что поверхностная мембрана живой клетки обладает свойствами кон­денсатора. Обкладками этого «тканевого конденсатора» служат наружная и внутренняя поверхности мембраны, а диэлектриком — слой липидов, обладающий значительным сопротивлением. Ввиду на­личия в мембране каналов, через которые могут проходить ионы, сопротивление этого слоя не равно бесконечности, как в идеальном конденсаторе. Поэтому поверхностную мембрану клетки обычно уподобляют конденсатору с параллельно включенным сопротивлением, по которому может происходить утечка зарядов (рис. 13,а).

Временной ход изменений мембранного потенциала при включении и выключении тока (рис. 13, б) зависит от емкости С и сопротивления мембраны R. Чем меньше произведениеRC — постоянная времени мембраны, тем быстрее при данной силе тока нарастает потенциал и, наоборот, большей величинеRC соответствует меньшая скорость увеличения потенциала.

Изменения мембранного потенциала возникают не только непосредственно в точках приложе­ния к нервному волокну катода и анода постоянного тока, но и на некотором расстоянии от полю­сов с той, однако, разницей, что их величина постепенно убывает по мере удаления от катода и анода. Объясняется это так называемыми кабельнымисвойствами нервного и мышечного волокон. Однородное нервное волокно в электрическом отношении представляет собой кабель, т. е. сердечник с низким удельным сопротивлением (аксоплазма), покрытый изоляцией (мембраной) и помещен­ный в хорошо проводящую среду. Эквивалентная схема кабеля приведена на рис. 13, б. При про­пускании через некоторую точку волокна длительное время постоянного тока наблюдается стацио­нарное состояние, при котором плотность тока и, следовательно, изменение мембранного потен­циала максимальны в месте приложения тока (т. е. непосредственно под катодом и анодом); с удале­нием от полюсов плотность тока и изменения потенциала на мембране экспоненциально уменьшают­ся по длине волокна. Поскольку рассматриваемые изменения мембранного потенциала в отличие от локального ответа потенциала действия или следовых потенциалов не связаны с изменениями ион­ной проницаемости мембраны (т. е. активным ответом волокна), их принято называть пассивными,