Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Дегтяренко Введение в физику неупорядоченных конденсированных 2011

.pdf
Скачиваний:
121
Добавлен:
16.08.2013
Размер:
5.14 Mб
Скачать

РАЗДЕЛ=NM= ГРАНУЛИРОВАННЫЕ МАТЕРИАЛЫ=

=

NM.N.=Гранулированные материалы=

=

Все предыдущие разделы были посвящены в основном одJ нородным неупорядоченным конденсированным системамK= ГрануJ лированным будем называть неоднородный материалI= состоящий= из случайно расположенных мелких областей= EгранулF= с сущеJ ственно различной проводимостьюI=в пределе смесью областей меJ талла и изолятораK=Случайный потенциал в таком материале обязаJ тельно имеет характерные длиныI= существенно большие межатомJ ных расстоянийI=вплоть до макроскопическихK==

Данный раздел является кратким изложением соответствуJ ющей главы==книги=xOzK====

Пусть=х=доля пространства с размерностью=d=I=занятая меJ талломK= Сама по себе величина= x еще ни о чем не говорит K =ЯсноI = что проводимость материала с металлическими включениями в виJ де шариков или в виде тонких нитей совершенно различна при одJ ном и том же = xK= Морфология материалаI= под которой понимаем= здесь форму включенийI=зависит от множества факторов и чрезвыJ чайно разнообразнаK= В качестве примера на рисKNMKN= приведены= сделанные на сканирующем электронном микроскопе фотографии= пленок=fnI=напылявшихся на подложку=pilO при комнатной темпеJ ратуре= xTzK= fn= не смачивает поверхностьI= на которую происходит= напылениеK=

Сначала попавшие на подложку атомыI= обладающие теплоJ вой энергиейI= двигаясь вдоль поверхностиI= собираются в маленьJ кие случайно разбросанные капельки=EрисKNMKNIаFK=При дальнейшем= напылении капельки растут I=и соприкасаясьI= сливаются в капли= большего диаметра=EрисKNMKNIбFK=Затем металлические области приJ обретают продолговатую формуK= По-видимомуI= при увеличении= площади контактов капель с подложкой в их центре возникают= участки с сильным сцеплениемK= При слиянии таких укрупненных= капель эти участки играют роль центров пиннинга для перемещаJ

ONN=

=

ющейся массы веществаI= понижая симметрию образующихся меJ таллических областей= EрисKNMKNIвFK= НаконецI= на последней стадии= перед образованием сплошной пленкиI= когда относительная плоJ щадь зазоров= (1-x)= = между металлическими областями малаI= эти= зазоры приобретают форму относительно тонких ветвящихся нитей= (рисKNMKNIгFK=На это тоже есть свои причины в виде каких-то комбиJ наций законов смачивания и сцепления напыляемого материала = с подложкойI= но ограничимся констатацией этих морфологических= особенностей структурыK=

=

РисKNMKNK==fnI=напыленный на=pil при комнатной температуре=

O

xTzK=Микрофотографии различных стадий напыленияW=аI=бI=вI=г=EсмK= текстF=

=

ONO=

=

Разобьем= d-мерное пространство на элементарные объемы= ~= ad и будем считатьI= что свойства среды внутри объема не меняютJ сяI=а свойства двух разных объемов независимы друг от другаK=Это= означает сведение пространственной задачи к задаче на решетке =с периодом= a и возможность использования простейших моделей= теории перколяцииK=

Для структуры на рисKNMKNIа характерный масштаб= a меJ таллических капель порядка=MKMRm=I=на рисKNMKNIб он порядка=MKOm=K= ТоI=что вместе с долей=x металлического объема меняется масштабI= мало существенноK= Гораздо важнееI= что на рисKNMKNIв средний поJ перечный размер металлических областей==меньшеI=чем их средний= продольный размер= b»= (O¸P) =a= K= Это означаетI= что на квадратной= решетке с периодом порядка=a=(»=1m=) появилась корреляция между= свойствами=b/a соседних узловK=

Математически уменьшение локальной симметрии струкJ туры описывается специфическими корреляторамиI=введение котоJ рых должно сильно усложнить картинуI= так что простейшие модеJ ли теории перколяции:= задача связей и задача узлов= становятся= неприменимымиK=В этом одно из объяснений того экспериментальJ ного фактаI= что критическое значение= xc= Z= MK8O±MKMO= = относительJ ной площади покрытия индием поверхности= pilO= I= при которой= возникает перколяцияI=гораздо большеI=чем известные критические= значения для этих задачK=Вторая причина в потере симметрии межJ ду металлическими и неметаллическими областями:= если для= структур на рисKNMKNIа и=NMKNIб можно считатьI= что области между= каплями имеют тот же порядок величиныI=что и сами каплиI=то на= рисKNMKNIг изолирующие области явно гораздо уже металлическихK= При этомI=однакоI=они продолжают успешно справляться со своими= изолирующими функциямиK=

Таким образомI=критическое значение сильно зависит от таJ ких физических факторовI=как коэффициент аккомодации падаюJ щих на поверхность атомовI=величины поверхностного натяженияI= сил сцепления и т.дK= Поэтому при напылении в тех же условиях= других металлов получаются другие значения=:=при напылении=pn=

получилось=xc=Z=MK8S±MKMO==I=а=mb==xc===MKST±MKMOK==

ONP=

=

ЗамечаниеW Наряду с металлическими гранулами в изолиJ рующей матрицеI =можно представить себе и гранулы изолятора в = металлической матрицеK= НоI= употребляя термин= ?гранула?I= будем= подразумевать=?металлическая гранула?K=Кроме тогоI=как уже говоJ рилосьI=гранулированным называем также материал со структуройI= показанной на рисKNMKNIгI== в котором самих гранулI= строго говоряI= нетK==

======В системеI= представленной на рисKNMKNI роль изолятораI= раздеJ ляющего металлические гранулы=Eили наоборотI=соединяющего ихF== играет вакуумK=Но эту роль может играть и изоляторK=Если какие-то= металл и изолятор не растворяются друг в другеI= то они образуют= смесь мелких металлических и изолирующих областей= EгранулFK= Такая смесьI=получившая название керметаI=получаетсяI=напримерI= при совместном напылении обоих компонент на изолирующую= подложкуK= Масштаб образующейся структуры контролируется фиJ зико-химическими факторами в процессе напыленияX= в зависимоJ сти от нихI=а также от времени напыления и толщины пленки могут= получаться как двухJI= так и трехмерные структурыK= На рисKNMKO= представлена электронная фотография кермета= ^u=H=^lOlP в облаJ сти существования бесконечного металлического кластера= Eзнак= H= использован для тогоI= чтобы отличать такую гранулированную сиJ стему от системы= ?пленка= ^uI =напыленная на= ^l =l?FK =Здесь также= заметна разница в ширинах металлических и изолирующих облаJ стейK==

Иногда удается сохранить сферическую форму гранул вплоть= до большой концентрации металлаK= Рис= NMKPI~= демонстрирует поJ лученную на просвечивающем электронном микроскопе структуру= пленки гранулированного= ^l=в матрице аморфного= de=при объемJ ной концентрации металла=xc=»=MKSSK=ВидноI=что металлически комJ понент материала состоит из сферических гранулK= Специальные= измерения позволили определить распределение гранул по диаметJ рам=EрисKNMKPIбF=оно оказалось довольно узкимK=

ON4=

=

=

РисK= NMKOK= Гранулированная пленка= EкерметF= состава= Au= H= AlOlPK=Темные области=–=металлK=Светлая линия=J=перколяционный= путь=Eлиния токаF=xUz =

=

=

 

Во всех упомянутых выше системах на каком-то этапе увеJ

личения относительного объема металла у материала появляется= конечная проводимостьI=т.еK=происходит переход металлизоляторK= Такой переход часто называют перколяционнымX=это название неJ явно подразумеваетI=что в основе такого перехода лежат чисто геоJ метрические факторыI =так что он является чисто классическим и = макроскопическимK= ДействительноI= перколяционные законы инваJ риантны относительно масштабаI= так что можно себе представить= перколяциюI= напримерI= в системе металлических шариков от подJ шипниковI= случайным образом расположенных на плоскости и заJ фиксированных застывшим парафиномK=

=

ONR=

=

=

РисKNMKPK== Пленка гранулированного= Al= в матрице аморфного= deK=Металл=–=светлые областиI=концентрация металла=–=SSB=xVz =

=

=

 

Но если среди характерных длин в системе есть и достаточно маJ

лыеI=то могут появиться и оказаться определяющими и специфичеJ

ские

физические факторыK= Будем интересоваться именно такими=

системамиK= С другой стороныI= если все характерные длины слишJ

ком

малыI= порядка межатомныхI= то возвращаемся к однородно=

разупорядоченному материалуK= Границы между различными класJ

сами

разупорядоченных систем зависят от тогоI= какими физичеJ

скими свойствами интересуютсяK=

======Поясним это примеромI=используя важный количественный паJ раметр гранулированной системы:=величину размерного расщеплеJ ния= = de между размерно квантованными уровнями электронов= внутри гранул=EрисKNMK4F=

de =N L Egc aP F ,==============================ENMKNF

ONS=

=

где= gc плотность состояний на ферми-уровне в массивном Jме

таллеFK=Для оценок можно считатьI=что de »NMh =h=при=~Z=RM K==

=

=

РисKNMK4K= = Размерное квантование уровней электронов= внутри гранул

=

Если массивный металл= это сверхпроводник с критичеJ ской температурой= qc и сверхпроводящей щелью= DI= то соотношеJ ние==

de » D = qc ==============================ENMKOF

определяет минимальный размер изолированной гранулы= asc= I =для= которой имеет смысл понятие сверхпроводящего состоянияK=Если=a= >=asc=I=то сверхпроводящий переход в гранулах происходит при той= же температуреI =что и в массивном металлеI =а тоI =как ведет себя= весь материал в целомI= зависит от силы взаимодействия между= грануламиK=Именно так ведут себя тонкие пленки=mbI=напылявшиеJ ся на зеркальную поверхность=pilO= смK= рисKNMKRбK= При обратном= неравенстве материал с точки зрения сверхпроводящего перехода= является однородно упорядоченнымI=температура определяется его= средними характеристиками и может плавно меняться вместе с ниJ миK=Пленки=mbI=напылявшиеся в другомI=внешне похожем экспериJ

ONT=

=

ментеI= на поверхность= pilOI= демонстрируют корреляцию между= температурой и сопротивлением пленки=EрисKNMKRFK==

=

РисK=NMKRK=К критерию гранулярности=xNMz=

==

Для нормального металла критерий гранулярности иной =и зависит от температурыK=Соотношение=

de » qc =============================ENMKPF

определяет минимальный размер гранулыI= для которой сохраняет= смысл понятие делокализованного электронаK=Если в интервал тепJ лового размытия попадает только один электронный уровеньI= то= вообще говоря правильнее его считать локализованнымI= а величиJ ну=a=размером волновой функцииI=т.еK=длиной локализацииK=УмоJ зрительно можно представить себе два типа эволюции гранулироJ ванных системK= Первый тип обусловлен изменением величины= xK= РисK= NMKN= = NMKP = =иллюстрируют именно такие системыK =Переход= металлизолятор в таких системах имеет как бы перколяционную= основуK= Поскольку вместе с== x меняется средняя концентрация деJ локализованных электронов в материалеI=уместно также вспомнить=

ON8=

=

и о переходе МоттаK =Другой тип эволюции выглядит так: =при доJ статочно большом фиксированном= x меняются свойства барьеров= между грануламиI =напримерI =их высотаK =Здесь тоже можно сфорJ мулировать критерий кроссовера от гранулированной к однородно= разупорядоченной системеK= Это можно сделать на основе сравнеJ ния расщепления= de с интегралом перекрытия волновых функций= электронов соседних гранулI= который количественно описывает= эффективность изолирующих барьеровK=В связи с таким типом эвоJ люции уместно вспомнить о переходе АндерсонаK==

На практике произвести такое разделение очень трудноI=но= условно можно считатьI= что в следующем разделе будут рассматJ риваться системы первого типаI= а в последнем= системы второго= типаK==

=

NM.O.=Кулоновская блокада и переход металлизолятор=

======На рисKNMKSI~=приведены зависимости сопротивления от= относительной концентрации металла в керметах системы= ^uH^lOlP=EсмK=рисKNMKOFI=измеренные при двух существенно разных= температурахK== На графике явно видны две области концентраций==

xK=Область== N ³ x ³ MK4

является металлической:= сопротивление= r =

сравнительно малоI= сравнительно слабо зависит от температуры и=

постепенно растет с

уменьшением= = xX= где-то вблизи значения=

x = xc » MKP8 == находится граница двух областейX= наконецI= для диJ

электрической области характерен очень резкий рост сопротивлеJ ния с уменьшением==x= и очень сильная температурная зависимость= rEq F K=

ON9=

=

=

РисK= NMKSK= Переход металл–изоляторK= Зависимость сопротивJ

ления гранулированных пленок от концентрации металла=x ОбраJ

= K=

тите внимание на шкалу на оси ординатW= диапазон изменения соJ противления больше=NO=порядков=xUz=

=

Аналогичный график= rEq F в другой системеI=kiHpilO=I= приJ веден на рисKNMKSIбK= Качественно система ведет себя так K=жеВ= частностиI= и здесь вблизи критического значения= xc производная= функции rEq F меняет знакK= Однако само критическое значение= xc= другоеK= О подобном разнобое значений на островковых пленках= уже упоминалосьK=

======Стандартное описание в терминах перколяционной моJ дели предполагаетI=что при концентрациях=x=>=xc линии тока целиJ ком проходят внутри металлического кластераI =а при= x =< =xc ток= должен хотя бы частично проходить через изоляторK=Тогда темпеJ

ратурную

зависимость= rEq F в области= x =< =xc должны были бы=

определять

свойства изолятораK= Но это верно лишь отчастиK= =

=

OOM=

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]