Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
termekh_otvety_2015.docx
Скачиваний:
42
Добавлен:
04.06.2015
Размер:
3.6 Mб
Скачать

Теорема Гюйгенса — Штейнера[править | править вики-текст]

Основная статья: Теорема Гюйгенса — Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jcотносительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел[править | править вики-текст]

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело

Описание

Положение оси a

Момент инерции Ja

Материальная точка массы m

На расстоянии r от точки, неподвижная

Полый тонкостенный цилиндр или кольцо радиуса r и массы m

Ось цилиндра

Сплошной цилиндр или диск радиуса r и массы m

Ось цилиндра

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Ось цилиндра

[Комм 1]

Сплошной цилиндр длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его конец

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Шар радиуса r и массы m

Ось проходит через центр шара

Конус радиуса r и массы m

Ось конуса

Равнобедренный треугольник с высотой h, основанием a и массой m

Ось перпендикулярна плоскости треугольника и проходит через вершину

Правильный треугольник со стороной a и массой m

Ось перпендикулярна плоскости треугольника и проходит через центр масс

Квадрат со стороной a и массой m

Ось перпендикулярна плоскости квадрата и проходит через центр масс

Прямоугольник со сторонами a и b и массой m

Ось перпендикулярна плоскости прямоугольника и проходит через центр масс

Правильный n-угольник радиуса r и массой m

Ось перпендикулярна плоскости и проходит через центр масс

40. Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где xy и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела.

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

41. 1.2. Метод Даламбера (метод бегущих волн, метод характеристик)

 

- уравнение колебаний струны.

(1)

Рассмотрим неограниченную струну и зададим начальные условия:

 

 

(2)

где-функция, задающая форму струны в начальный момент времени,

-скорость точки струны в начальный момент.

Уравнение решается в явном виде с помощью замены переменных:

, где

,-некоторая функция только переменной η, то естьне зависит от.

 

Интегрируя это равенство по η при фиксированном ξ, получим:.

Вернемся к старой переменной:

.

(3)

- описывает волну, бегущую направо.  Например, функция имеет вид x-at=0, следовательно x=at, то есть “горб” движется направо со скоростью а. - описывает волну, бегущую налево.x+at=0, следовательно x=-at, то есть “горб” движется налево со скоростью а.

Функция (3) является общим интегралом уравнения (1). Теперь необходимо удовлетворить начальным условиям (2):

.

(4)

(5)

Интегрируя (5), получим:

, где С=const.

(6)

Из равенств (4) и (6) находим

.

(7)

(8)

Выражения (7), (8) подставляем в (3).

.

-формула Даламбера.

42 . В динамике связи можно учесть с помощью введения сил реакции связей. Силы реакции связей наряду с действующими, или активными силамиЗаписывают в правую часть уравнений второго закона Ньютона:(2.5)

Силы реакции связей заранее неизвестны и определяются во время интегрирования уравнений движения. Поэтому при наличии связей решение задач механики с помощью уравнений второго закона Ньютона усложняется тем, что необходимо интегрировать боль­ше уравнений, чем число степеней свободы, и тем, что приходится определять силы реакции связей.

Вначале рассмотрим случай, когда материальные точки поко­ятся. Это возможно, если сумма сил, действующих на каждую материальную точку, равна нулю:(2.6)

Введем понятие виртуального перемещения. Виртуальное переме­щение — это мысленное бесконечно малое перемещение, которое в данный момент времени материальная точка может совершить, не нарушая связей. Чтобы отличать виртуальные перемещения от реальных перемещений материальных точек, будем обозначать их греческой буквой , то есть виртуальное перемещение матери­альной точки с индексом обозначим, а реальное бесконечно малое ее перемещение по-прежнему будет обозначаться как.Домножая равенства (2.6) на И суммируя по всем матери­альным точкам системы, получим(2.7)

Первое слагаемое в (2.7) представляет работу активных сил на виртуальных перемещениях. Это — работа, которую совершили бы активные силы, если бы эти перемещения произошли. Ее называют Виртуальной работой активных сил. Соответственно второе слагаемое в (2.7) дает виртуальную работу сил реакции связей. Существует большое количество связей, для которых виртуальная работа сил реакции связей равна нулю. Такие связи называются Идеальными связями. Идеальными являются связи, осуществляемые нерастяжимыми нитями и в пренебрежении сил трения связи, обеспечиваемые твердыми телами.

Для идеальных связей второе слагаемое в равенстве (2.7) равно нулю. В результате получаем уравнение (2.8)

В отличие от равенства (2.7), которое вследствие выполнения условий равновесия (2.6) представляет собой тождество, выражение (2.8) является уравнением. Так как при наличии связей не все Независимы, то из (2.8) следуют условия. Эти условия по-прежнему выполняются в отсутствие связей, когдаНезависимы. Уравнение (2.8) позволяет найти условия равновесия системы материальных точек как в отсутствие связей, так и при их наличии. При этом нет необходимости рассматривать силы реакции связей. Уравнение (2.8) формулируется какПринцип виртуальных перемещений: в положении равновесия работа активных сил на виртуальных перемещениях равна нулю.

Принцип виртуальных перемещений является основным принципом, применяемым в решении задач статики в механике. Проведенные для статики рассуждения обобщаются и на случай динамики. Для этого необходимо в уравнении (2.5) перенести направо и проделать те же операции, что и в статике. В результате получается уравнение:(2.9)

Если формально ввести силы инерции , то его можно записать в таком же виде, как уравнение принципа виртуальных перемещений:

. (2.10)

Уравнение (2.10) формулируется как Принцип ДаламбераРабота активных сил вместе с силами инерции на виртуальных перемещениях равна нулю.

Принцип Даламбера является основным принципом динамики систем материальных точек со связями. В отсутствие связей все независимы, и из принципа Даламбера получаются уравнения второго закона Ньютона.Виртуальные перемещенияможно выразить через изменения обобщенных координат, которые обозначим. Эти бесконечно малые изменения обобщенных координат рассматриваются для фиксированного момента времени и называютсяВариациями обобщенных координат. Посчитаем дифференциал от выражений (2.2Преобразование от декартовых координат к обобщенным координатам в векторной форме: )при фиксированном . Так как время фиксировано и любое изменение обобщенных координат приводит к изменению, совместимых со связями, то полученные бесконечно малые изменения Являются виртуальными перемещениями. В результате виртуальные перемещения выражаются через вариации обобщенных координат:

 (2.11)Подставляя выражения для из (2.11) в уравнение (2.9), получим еще одно выражение дляПринципа Даламбера. (2.12)

Поскольку вариации обобщенных координат Независимы, то из (2.12) получается система уравнений

 (2.13)

В системе уравнений (2.13) нет сил реакции связей, и число уравнений равно числу степеней свободы. В дальнейшем во все уравнения будут входить только активные силы, и мы специально не будем отмечать это.

43. Используя понятие массы, можно представить соотношение между силой (причиной) и ускорением (следствием).

Если: F — сила вызывающая ускорение тела (Ньютон), m — масса тела, (килограмм), a — приобретенное телом ускорение, (метр/секунда²), То:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]