Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

kompendium_po_fizike

.pdf
Скачиваний:
91
Добавлен:
19.02.2016
Размер:
3.47 Mб
Скачать

каким нужно оставаться за ее пределами.

Известно, что в липидной фазе мембраны хорошо растворимы неполярные вещества, например, органические и жирные кислоты, эфиры. Поэтому такие вещества сравнительно легко проходят через клеточные мембраны, обладая повышенным сродством к липидной фазе мембран. Из выражения для коэффициента проницаемости (P=Dk/L) КМ следует, что коэффициент проницаемости мембраны для таких молекул тем больше, чем больше коэффициент диффузии D, чем тоньше мембрана (чем меньше L) и чем лучше вещество растворяется в липидной фазе мембраны (чем больше k).

При опытах с искусственными липидными бислоями было установлено, что чем меньше молекула, и чем меньше она образует водородных связей, тем быстрее она диффундирует через мембрану. Следовательно, чем меньше молекула и чем

более она жирорастворима (гидрофобна или неполярна), тем быстрее она будет проникать через мембрану. Малые

неполярные молекулы легко растворимы в липидах КМ и быстро диффундируют.

Так как внутренняя часть КМ гидрофобна, то липидный бислой КМ представляет собой практически непроницаемый барьер для большинства полярных молекул. Вследствие наличия этого барьера предотвращается утечка содержимого клеток, однако из-за этого клетка была вынуждена создать специальные механизмы для транспорта растворимых в воде веществ через мембрану – через поры в мембране и посредством

транспортных белков-переносчиков молекул.

Молекулы воды очень быстро проникают через КМ посредством наполненных водой белковых и липидных пор, образованных в мембранах клеток. Однако в последнее время помимо гидрофильных пор проникновение через мембрану мелких полярных молекул связывают с образованием между жирнокислотными хвостами фосфолипидных молекул при их тепловом движении небольших свободных полостей − кинков (от англ. kink − петля). Вследствие теплового движения хвостов молекул фосфолипидов кинки могут перемещаться поперек мембраны и переносить попавшие в них мелкие молекулы, в первую очередь молекулы воды.

91

Через гидрофильные липидные и белковые поры сквозь мембрану проникают молекулы нерастворимых в липидах веществ и водорастворимые гидратированные ионы,

окруженные молекулами воды. Для жиронерастворимых веществ и ионов мембрана выступает как молекулярное сито: чем больше размер частицы, тем меньше проницаемость мембраны для этого вещества.

Избирательность переноса обеспечивается набором в мембране пор определенного радиуса, соответствующих размеру проникающей частицы. Это распределение зависит от мембранного потенциала. Так, избирательные для ионов калия поры в мембране эритроцитов имеют сравнительно низкий коэффициент проницаемости, равный 4 пм/с при мембранном потенциале 80 мВ, который уменьшается в четыре раза с понижением потенциала до 40 мВ.

Проницаемость мембраны аксона кальмара для ионов калия при уровне потенциала возбуждения определяется калиевыми каналами, радиус которых численно оценивается как сумма кристаллического радиуса иона калия и толщины одной гидратной оболочки (0,133 нм + 0,272 нм = 0,405 нм). Следует отметить, что селективность ионных каналов не абсолютна, каналы доступны и для других ионов, но с меньшими значениями Р.

Максимальная величина коэффициента проницаемости Р соответствует ионам калия. Ионы с большими кристаллическими радиусами (рубидий, цезий) имеют меньшие Р, по-видимому, потому, что их размеры с одной гидратной оболочкой превышают размер канала.

Перенос малых водорастворимых молекул осуществляется также при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул.

Но клетке необходимо обеспечить транспортировку таких веществ, как сахара, аминокислоты, нуклеотиды, а также многих других полярных молекул. За перенос подобных веществ ответственны специальные мембранные транспортные белки.

Каждый из них предназначен для определенного класса молекул,

92

а иногда и для определенной разновидности молекул. Все изученные транспортные белки являются трансмембранными белками, полипептидная цепь которых пересекает липидный бислой несколько раз. Все они обеспечивают перенос молекул через мембрану, формируя в ней сквозные проходы.

В основном транспортные белки делятся на белкипереносчики и каналообразующие белки. Первые взаимодействуют с молекулой переносимого вещества и какимлибо способом перемещают ее сквозь мембрану. Каналообразующие белки, напротив, формируют в мембране водные поры, через которые (когда они открыты) могут проходить вещества (обычно неорганические ионы подходящего размера и заряда).

Облегченная диффузия происходит при участии молекулпереносчиков. Известно, например, что антибиотик валиномицин − переносчик ионов калия. Валиномицин является пептидом с молекулярной массой 1111. В липидной фазе молекула валиномицина имеет форму манжетки, устланной внутри полярными группами, а снаружи неполярными гидрофобными остатками молекул валина.

Особенности химического строения валиномицина позволяют образовывать комплекс с ионами калия, попадающими внутрь молекулы-манжетки, и в то же время валиномицин растворим в липидной фазе мембраны, так как снаружи его молекула неполярна. Ионы калия удерживаются внутри молекулы за счет сил ион-дипольного взаимодействия. Молекулы валиномицина, оказавшиеся у поверхности мембраны, могут захватывать из окружающего раствора ионы калия. Диффундируя в мембране, молекулы переносят калий через мембрану и отдают ионы в раствор по другую сторону мембраны. Таким образом, происходит челночный перенос ионов калия через мембрану.

Отличия облегченной диффузии от простой диффузии:

1.Перенос ионов с участием переносчика происходит значительно быстрее по сравнению со свободной диффузией.

2.Облегченная диффузия обладает свойством насыщения − при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого

93

предела, когда все молекулы переносчика уже заняты.

3.При облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда одним переносчиком переносятся разные вещества, при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других.

4.Есть вещества, блокирующие облегченную диффузию, они образуют прочный комплекс с молекулами переносчика, препятствуя дальнейшему переносу.

Разновидностью облегченной диффузии является транспорт с помощью неподвижных молекул переносчиков, фиксированных определенным образом поперек мембраны. При этом молекула переносимого вещества передается от одной молекулы переносчика к другой по типу эстафеты.

Осмос − преимущественное движение молекул воды через полупроницаемые мембраны (непроницаемые для растворенного вещества и проницаемые для воды) из мест с меньшей концентрацией растворенного вещества в места с большей концентрацией. Осмос, по сути, диффузия воды из мест с ее большей концентрацией в места с меньшей концентрацией. Осмос играет большую роль во многих биологических явлениях. Явление осмоса обусловливает гемолиз эритроцитов в гипотонических растворах и тургор в растениях.

94

ФОРМИРОВАНИЕ МЕМБРАННЫХ ПОТЕНЦИАЛОВ КЛЕТКИ В ПОКОЕ И ПРИ ВОЗБУЖДЕНИИ

1. История открытия биопотенциалов. Гипотеза Бернштейна

Один из первых шагов на пути выяснения природы электрических явлений в живых организмах («животного электричества») был сделан тогда, когда французский священник аббат Нолле в 1746 году открыл явление осмоса. В то далекое время явление осмоса рассматривалось как результат действия неких особых, так называемых «жизненных» сил, которые действуют только в живых организмах2. В 1826 году французский врач и физиолог А. Дютроше заинтересовался явлением осмоса. Он был первым исследователем, кто научно доказал, что осмос есть результат проявления не особых, мифических «жизненных» сил, а законов физики и химии. С этого момента сторонники физико-химического подхода в биологии начали многочисленные исследования проявления осмоса в живых организмах. Осмосом начали объяснять работу почек, всасывание пищи в кишечнике.

В исследовании осмоса главную роль сыграли ботаники – они были первыми, кто начал изучать живые организмы, как теперь говорят, на клеточном уровне. Немецкий ботаник Пфеффер сделал важный и принципиальный шаг в исследовании осмоса – изобрел осмометр и измерил величину осмотического давления. Измеряя величину осмотического давления для разных растворов, Пфеффер обнаружил, что для каждого раствора величина давления прямо пропорциональна концентрации растворенного в растворителе вещества, не проходящего через

полупроницаемую мембрану ( Росм ~ Vm , где m – масса

растворенного вещества, V – объем раствора). Однако исследователь не смог объяснить, почему для разных растворов при одной и той же массовой концентрации получаются разные давления.

2 Явление осмоса первоначально обнаружили и изучали на полупроницаемых пленках животного происхождения (стеки мочевого пузыря, кожа лягушки и т.д.).

95

В 70-х года XIX века голландский ботаник Х. Де Фриз3 занимался явлением осмоса – изучал влияние осмоса на изменение объема клеток растений в растворах разной концентрации. Х. Де Фриз рассказал о работах Пфеффера по исследованию осмоса молодому голландскому химику Я. ВантГоффу. Изучив экспериментальный материал Пфеффера, ВантГофф пришел к заключению, что молекулы растворенного вещества в растворителе ведут себе подобно молекулам идеального газа. Следовательно, величину осмотического давления можно рассчитать по формуле для определения давления идеального газа:

Pосм СмRT

где СМ – молярная плотность растворенного вещества. За теорию растворов Вант-Гофф через 15 лет получит Нобелевскую премию по химии.

Теория Вант-Гоффа давала точные значения величины осмотического давления для растворов многих веществ (сахарозы, СО2). Но для некоторых веществ величина осмотического давления оказывалась больше расчетной в 2 раза. Вряд ли такую высокую погрешность (100%) можно объяснить неточностью измерений. Обдумывание данной проблемы привело к важнейшему открытию. Единомышленник Вант-Гоффа шведский ученый С. Аррениус предположил, что если, например, для раствора NaCl давление оказывается в два раза больше расчетного, то это может означать лишь одно – в растворе число частиц увеличивается вдвое. Увеличение вдвое числа части в растворе натолкнуло на мысль, что в растворе молекула поваренной соли распадается на две частицы. Из сопоставления этого факта с другими (например, сравнивая электропроводность раствора) Аррениус пришел к идее электролитической диссоциации. До Аррениуса считалось, что ионы в растворах возникают при действии на раствор электрического тока. Однако участие ионов в явлении осмоса показало, что это не соответствует действительности – ионы существуют в растворах некоторых веществ до пропускания через них электрического

3 Впоследствии Х. Де Фриз стал одним из создателей современной ботаники, был ректором Амстердамского университета.

96

тока. Таким образом, изучение осмоса привело к открытию двух объектов, имеющих самое непосредственное отношение к «животному электричеству» − полупроницаемых мембран и ионов.

В 1887 г. в первом номере «Журнала физической химии»4 была опубликована статья Вант-Гоффа и Аррениуса с изложением теории электролитической диссоциации. Статья в журнале возвещала научному миру о новом подходе в химии. В Берлине в 1887 г. окончил университет Вальтер Нернст (23 года). Впоследствии он станет знаменитым физиком и химиком,

откроет третье начало термодинамики, получит Нобелевскую премию по химии, сменит на посту Института физики в Берлине знаменитого

Макса Планка.

По окончании университета В. Нернст работал в

Рисунок 37. Опыт Нернста

должности ассистента

Оствальда и темой

 

своей диссертации он выбрал теоретическую работу о гальванических элементах. Теорией гальванических элементов до Нернста занимались такие великие ученые, как У. Томсон, Гиббс, Гельмгольц. Но Нернст решил разработать новую теорию гальванических элементов, исходя из того, что в электролитах существуют ионы, способные к диффузии. В 1889 г. диссертация была завершена Нернстом и опубликована. В ней, в частности, была высказана и обоснована идея так называемого диффузионного потенциала, возникающего при соприкосновении двух жидкостей.

Кратко рассмотрим механизм возникновения диффузионного потенциала. Пусть имеется сосуд с непроницаемой перегородкой. По обе стороны перегородки в сосуде находится электролит

4 Основателем журнала был знаменитый ученый В. Оствальд

97

Рисунок 38. Диффузия ионов через полупроницаемую плёнку

различной концентрации. Пусть, например, концентрация электролита слева от перегородки будет больше, чем в правой части сосуда (рисунок 37). После того как из сосуда будет изъята перегородка, в сосуде начнется процесс диффузии, стремящийся выровнять концентрации ионов электролита в левой и правой частях сосуда. Так как концентрация электролита в левой части

изначально более высокая, то преобладающими будут потоки ионов из левой части сосуда в правую. Если предположить, что скорость движения положительных и отрицательных ионов разная (разная подвижность ионов), то более быстрые ионы (например отрицательные) убегут вперед от более медленных

ионов положительных ионов. Возникнет расслаивание катионов и анионов в растворе, вследствие чего в растворе образуется электрическое поле с разностью потенциалов, получившей название диффузионного потенциала. Величина диффузионного потенциала, согласно Нернсту, может быть рассчитана по формуле:

н

u

 

RT

 

C1

 

,

ln

 

 

u

 

F

C2

 

 

где u и – скорости более быстрого и более медленного ионов, R – универсальная газовая постоянная, T – температура раствора, F – постоянная Фарадея, C1 и C2 – концентрации электролита в левой и правой частях сосуда.

Таким образом, для возникновения диффузионного потенциала необходимыми условиями являются: а) разность концентраций электролита, различная подвижность анионов и катионов.

В 1890 г. Вильгельм Оствальд, продолжая исследования

98

полупроницаемых искусственных пленок, установил, что полупроницаемость пленок может вызвать не только осмос, но и электрические явления. Осмос возникает тогда, когда пленка пропускает относительно мелкие молекулы растворителя (например воды), но не пропускает крупные молекулы растворенного вещества. Но ведь в электролите ионы могут иметь разные размеры. Если взять сосуд, разделить полупроницаемой пленкой на две части, в левую и правую части сосуда залить электролит разной концентрации, и если размеры пор в пленке позволяют проникать через нее только относительно мелким ионам, например отрицательным ионам (рисунок 38), то вследствие диффузии между левой и правой половинами сосуда возникнет разность потенциалов. Величина разности потенциалов определяется из формулы В.Нернста (если предположить, что скорость одного сорта ионов равна нулю – мембрана не пропускает данный сорт ионов):

н

RT

 

C1

 

ln

.

 

F

C2

 

Таким образом, В.Оствальд объединил знания о полупроницаемых мембранах с формулой Нернста. Он предположил, что свойствами полупроницаемой мембраны можно объяснить потенциалы мышц, нервов, электрических органов рыб. Идея Оствальда, как ни странно, оказалась незамеченной ни биологами, ни физиологами. И только Юлиус Бернштейн смог ее оценить.

Бернштейн не только оценил идею Оствальда, но и сделал следующий решающий шаг на пути выяснения природы электричества в живых организмах. Он начал объяснять электрические свойства мышц и нервов не устройством этих органов в целом, а свойствами клеток, из которых эти органы состояли. Бернштейн был первым, кто указал на непосредственного «виновника» «животного электричества» − клеточную мембрану и перенос ионов.

Первые публикации Ю. Бернштейна по мембранной теории потенциалов появились в далеком 1902 г.. 1902 г. по праву считается годом рождения мембранной теории биопотенциалов.

99

Согласно гипотезе Бернштейна, каждая клетка имеет оболочку, которая представляет собой полупроницаемую мембрану. Внутри и вне клетки имеется много свободных ионов, среди которых находятся ионы К+. Пусть концентрация ионов К+ внутри больше, чем вне клетки, и клеточная мембрана пропускает только ионы К+. Тогда ионы К+ начнут выходить из клетки, где их много, наружу. Одновременно с этим существует поток ионов К+ снаружи клетки внутрь, но так как снаружи ионов К+ мало, то и поток этот будет незначительный на фоне потока ионов К+, направленного изнутри клетки наружу. Вместе с ионами К+ наружу будет выноситься и положительный заряд. Поэтому на внутренней стороне мембраны клетки, находящейся в состоянии покоя, образуется скомпенсированный отрицательный электрический заряд, а на наружной стороне – положительный. Возникающая разность потенциалов будет тормозить вынос ионов К+ из клетки и увеличивать поток ионов К+ снаружи клетки внутрь клетки. Когда потоки ионов внутрь клетки и наружу сравняются, установится на клетке динамическое равновесие, и на клеточной мембране будет поддерживаться постоянным по величине потенциал покоя. Разность потенциалов между внутренней стороной БМ и ее наружной стороной называется потенциалом покоя (ПП). Величина ПП описывается формулой Нернста:

 

 

 

 

 

 

 

 

 

 

RT

 

K

 

 

 

 

 

н

ln

 

i

 

,

 

F

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

где K i − концентрация ионов калия внутри клетки,

K 0

концентрация ионов калия снаружи клетки.

Гипотеза Бернштейна о генерации ПП на клеточной мембране была встречена в научном мире без особого восторга и оваций. В глазах современников она выглядела не более чем гипотезой, и самому Бернштейну, а затем и его последователям понадобились годы и десятилетия упорного труда, споров и сомнений, пока удалось доказать свою правоту. В первую очередь гипотеза требовала экспериментальных подтверждений. Бернштейну пришлось придумать серию научных экспериментов, которые могли бы, пусть даже и косвенно, подтвердить его

100

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]