Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ист и метод биол Курс лекц 2012.doc
Скачиваний:
306
Добавлен:
26.03.2016
Размер:
1.2 Mб
Скачать

Лекция № 7

Тема лекции: История молекулярной биологии и генетики

План лекции:

1. Открытие ферментов и коферментов

2. Изучение тонкой структуры белков с помощью физико-химических методов

3. Изучение строения биомолекул методом хроматографии

4. Установление первичной структуры белка

5. Краткая история генетики

6. Установление роли ДНК

7. Открытие двойной спирали ДНК

8. Расшифровка генетического кода

1. Открытие ферментов и коферментов

Процесс обмена веществ, который стал особенно хорошо известен ученым в середине 50-х годов, мож­но считать своеобразным выражением ферментатив­ной природы клетки. Любая метаболическая реакция катализируется благодаря специфическому ферменту; характер обмена веществ определяется природой и концентрацией присутствующих в клетке ферментов. Следовательно, чтобы понять обмен веществ, необхо­димо знать ферменты.

На протяжении ХIХ столетия ферменты считались таинственными веществами, выявляемыми лишь по их действию. Немецкому химику Леонору Михаэлису (1875—1949) удалось раскрыть тайну ферментов с помощью законов и методов химической кинетики (раздела физической химии, изучающего скорость ре­акций). В 1913 г. он установил зависимость скорости реакций, катализируемых ферментами, от определен­ных условий. Он предположил, что фермент образует промежуточное соединение с веществом, реакцию ко­торого он катализирует. Подобное допущение свиде­тельствует о том, что ферменты есть не что иное, как молекулы, подчиняющиеся физико-химическим зако­нам. Но что же это за молекулы? По всей вероятно­сти, это белки, так как ферментный раствор легко те­ряет активность даже при слабом нагревании, а, как известно, такую термолабильность имеют лишь белко­вые молекулы.

Однако все это были лишь предположения. В 20-х годах немецкий химик Рихард Вильштеттер (1872—1942) выдвинул гипотезу, согласно которой ферменты вовсе не являются белками. Правда, как оказалось впоследствии, эта гипотеза была ошибочной, но науч­ный авторитет ее автора долгое время не позволял в ней усомниться. Через несколько лет вопрос о белко­вой природе ферментов был поднят вновь, на сей раз американским биохимиком Джеймсом Самнером (1887—1955). В 1926 г. Самнер выделил из семян мечевидной канавалии фермент, катализирую­щий реакцию расщепления мочевины на аммиак и углекислый газ. В процессе получения фермента уче­ный обнаружил возникновение в определенный мо­мент мельчайших кристаллов. Выделив и растворив эти кристаллы, он получил жидкость с повышенной активностью уреазы. Все попытки отделить эту актив­ность от кристаллов не увенчались успехом. Получен­ные кристаллы оказались ферментами и, как показа­ли опыты Самнера, одновременно и белками. Таким образом, уреаза была не только первым ферментом, полученным в кристаллическом виде, но и первым ферментом с доказанной белковой природой.

Сом­нениям относительно того, распространяется ли эта закономерность на все ферменты, положили конец ис­следования американского биохимика Джона Нортропа. В 1930 г. ученому уда­лось кристаллизовать пепсин — расщепляющий белок фермент желудочного сока; двумя годами позже — трипсин и в 1935 — химотрипсин. Трипсин и химотрипсин — расщепляющие белок ферменты поджелу­дочной железы. Они также оказались белками. После этого ученые получили в кристаллическом виде еще десятки ферментов, и все они были белками.

Артур Харден, открывший в начале ХХ столетия промежуточный обмен веществ, обратил также внима­ние на еще одну сторону ферментативной деятельно­сти. Он поместил в воду дрожжевой экстракт в не­большом мешке из диализирующей мембраны (через которую просачиваются только молекулы малых раз­меров). После того как через стенки мешка вышли мелкие молекулы экстракта, последний уже не мог расщеплять сахар. Объяснить это явление просачива­нием через мембрану самого фермента нельзя, по­скольку вода, в которой находился мешок, также не расщепляла сахара. Однако в соединении с экстрак­том внутри мешка она приобретала эту способность. Следовательно, можно сделать вывод: помимо круп­ных молекул, фермент включает в себя и относитель­но мелкие, непрочно связанные и потому способные просачиваться через мембрану. Эти мелкие молекулы, являющиеся структурной частью фермента и очень важные для его функционирования, получили назва­ние коферментов.

В середине 20-х годов шведский химик Ганс Эйлер обнаружил, что и другие ферменты содержат коферменты, однако структуру последних удалось выяснить лишь десяти­летием позже. Тогда же определили строение витами­нов, после чего уже не вызывало сомнения, что в боль­шинстве коферментов в качестве составной части мо­лекулы имеются витаминоподобные структуры.

Итак, витамины, по-видимому, являются той частью коферментов, которые не вырабатываются са­мим организмом и поэтому должны быть включены в пищу. Без витаминов построение коферментов не­возможно, а без коферментов некоторые ферменты оказываются недеятельными и, таким образом, обмен веществ нарушается. В результате наступает авита­миноз, иногда со смертельным исходом.

Поскольку ферменты и коферменты — это катали­заторы, нужные организму в малых количествах, ви­тамины тоже нужны в столь же небольших количе­ствах. Этим, собственно, и объясняется тот факт, что ничтожнейшие составные части пищи могут оказаться крайне необходимыми для нормальной жизнедеятель­ности организма. Следовые количества таких эле­ментов, как медь, кобальт, молибден, цинк, образуют существенную часть ферментной структуры. Были вы­делены ферменты, содержащие по одному или не­сколько атомов этих элементов.