Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Модуль 2-1 пр Лекции.doc
Скачиваний:
15
Добавлен:
09.11.2018
Размер:
2.72 Mб
Скачать

Окружность

Окружность представляет собой геометрическое место точек, равноудаленных от точки О, называемой центром окружности. Уравнение окружности можно получить из уравнения эллипса при a=b=R:

x2+y2=R2.

Гипербола

Гиперболой называется геометрическое место точек M(x,y), для которых абсолютная величина разности расстояний до двух заданных точек F1(+c,0) и F2(-c,0) (называемых фокусами гиперболы) постоянна и равна .

Вывод уравнения гиперболы.

По определению и значит а<с.

Воспользуемся формулой расстояния между двумя точками

По определению . Подставим в это равенство r1 и r2:

Проделаем преобразования:

Если c2- a2=b2, то b2x2-a2y2=a2b2 и

- каноническое уравнение гиперболы.

Гипербола – центральная линия второго порядка. Она состоит из двух бесконечных ветвей, симметрична относительно осей. Элементами гиперболы являются: точка О - центр гиперболы; точки А и В - вершины гиперболы; точки F1(+,0) и F2(-,0) - фокусы гиперболы; 2с - фокусное расстояние, которое вычисляется по формуле ; AB=2a - действительная ось гиперболы; CD=2b - мнимая ось гиперболы; - эксцентриситет гиперболы.

Эксцентриситет определяется отношением осей гиперболы и характеризует еe форму: чем больше e, тем более вытянут вдоль мнимой оси основной прямоугольник гиперболы.

Асимптоты гиперболы - это прямые, к которым ветви гиперболы неограниченно приближаются при удалении в бесконечность.

Уравнения асимптот гиперболы имеют вид .

Угол между асимптотами зависит от значения эксцентриситета гиперболы , он определяется из уравнения . При гипербола называется равнобочной, ее асимптоты взаимно перпендикулярны, уравнение гиперболы имеет вид . Если принять асимптоты за оси координат, то уравнение гиперболы примет вид , то есть равнобочная гипербола является графиком обратной пропорциональности.

Прямые , перпендикулярные действительной оси гиперболы и отстоящие от ее центра на расстояниях , называются директрисами гиперболы, соответствующими фокусам F1 и F2. Отношение расстояния любой точки гиперболы до фокуса к расстоянию ее до соответствующей директрисы постоянно и равно эксцентриситету .

Сопряженные гиперболы – две гиперболы, которые в одной и той же системе прямоугольных координат при одних и тех же значениях и определяются уравнениями и .

Сопряженные гиперболы имеют общие асимптоты. Действительная ось каждой из них есть мнимая ось другой и наоборот.

Парабола

Параболой называется геометрическое место точек M(x,y), расстояние которых до определенной точки F(p/2,0) (называемой фокусом параболы) равно расстоянию до определенной прямой (называемой директрисой параболы).

Вывод уравнения параболы.

По определению и r = d, .

Воспользуемся формулой расстояния между двумя точками: , , .

y2=2px - каноническое уравнение параболы.

Парабола – нецентральная линия второго порядка. Она состоит из одной бесконечной ветви, симметричной относительно оси.

Элементами параболы являются: точка О - вершина параболы; ox - ось параболы; точка F(р/2,0) - фокус параболы; - уравнение директрисы параболы; - эксцентриситет параболы, p - фокальный параметр (расстояние от фокуса до директрисы или половина длины хорды, проходящей через фокус перпендикулярно оси).