Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Поверхностные явления и дисперсные системы.doc
Скачиваний:
28
Добавлен:
10.09.2019
Размер:
1.27 Mб
Скачать

1.5 Методы получения коллоидных систем

Т.к. коллоиды это не особый класс веществ, а состояние, присущее всем веществам, рассмотрим методы обеспечивающее достижение этого состояния. Все методы разделяются на 2 группы:

А. Диспергационные (вещества тонко измельчаются – диспергируют в состав дисперсионной среды)

Б. Конденсационные (коллоидное состояние возникает в результате объединения молекул или ионов вещества)

Диспергационные

1.Механическое дробление (все природные коллоидные системы). Шаровые мельницы дают d от 2-3 до 50-70 мкм. Коллоидные мельницы – за счет высоких скоростей вращения ротора в пространстве между ротором и корпусом за счет трения достигается измельчение вещества до d < 1мкм.

2.Ультрозвуковое дробление – за счет захлопывания возникающих в жидкости полостей, возникают ударные микроволны (кавитация). Частота колебания до 800 тыс./сек.

3.Электрическое дробление (в вольтовой дуге или высокочастотным разрядом) (Сведберг)

4.Химическое дробление – пептизация

Fe(OH)2 + NaCl → Fe(OH)2Cl + NaOH

Конденсационные

А.Физические 1.Конденсация пара в газовой среде (туман).

2.Конденсация пара в жидкости (ртуть в холодной воде), золи металлов в электрической дуге

3.Конденсация частиц при замене растворителя (канифоль – замена спирта на воду)

4.Совместная конденсация веществ не растворимых друг в друге (золи металлов Al, Na, K в органических растворителях) – испарение и совместная конденсация в вакууме.

Б.Химические (называются по типу химической реакции)

1.Восстановление 2HAuCl4 + 3H2O2 → 2Au + 8HCl + 3O2 (метод Зигмунди)

↘золь золи Ag, Pt, Hg, Bi, Cu

2 .Гидролиз FeCl3 + 3H2O → Fe(OH)3 +3HCl Al2(OH)5Cl + H2O → 2Al(OH)3 +HCl очистка воды коагуляцией

3 .Окисление-восстановление 3O2 + 2H2S → 3S + 2H2O

гидрозоль

4 .Реакция обмена AgNO3 + KJ → AgJ + KNO3 аэрозоль

Для повышения степени дисперсности системы:

1. Смешивают очень разбавленные растворы С<10-4 моль/л

2. Введение специальных веществ (стабилизаторов), которые уменьшают слипание, создавая защитную прослойку (мыло, желатин)

1.6. Правило фаз Гиббса для дисперсных систем

В физ. химии правило фаз Гиббса имело вид

F = к+ф+2, где под 2 понимают термодинамически интенсивные переменные P,T, т.е. таким образом определяется число степеней свободы или вариантность системы. F – число независимых переменных, которые можно изменять в некоторых пределах так, чтобы число и природа фаз оставались прежними. Наименьшее число переменных описывает состояние системы. Для газа F=2

Рассмотрим теперь трехкомпонентную гетерогенную систему бензол-вода-ПАВ. Здесь F=3-2=1, P,T – const, 1 – количество ПАВ. Но, если

1.цилиндр 2.противень

Как распределится ПАВ в этих случаях? S1<S2; Sуд1<Sуд2;

1.mпПАВ,ц<mпПАВ,пр;

2.cvПАВ,ц>cvПАВ,пр

т.е. изменеие Sуд или Д привело к изменению равновесия в системе, т.е. система получила дополнительную степень свободы.

Отсюда Д (Sуд) является самостоятельным термодинамическим параметром системы, изменение которого вызывает соответствующие изменения других равновесных свойств системы. Sуд является интенсивным признаком системы. Ее можно характеризовать как количество поверхности, приходящимся на 1 обьема. Отсюда: правило фаз Гиббса для дисперсных систем может быть записано: F=к+ф+3, где под 3 понимают P,T,S.

1.7 Молекулярно-кинетические свойства свободно-дисперсных систем.

В 1827г. Английский ботаник Роберт Броун исследуя споры папоротника в воде обратил внимание на их хаотические движения, которые зависели от их размера и температуры. Только в конце 19в. Гуи и Экспер связали это с тепловым движением молекул. Фактически это открытие доказывало существование атомов и молекул.

Экспер попытался количественно описать эти движения, используя уравнения кинетической энергии частиц , k – const Больцмана.

Однако вычисления давали значения перемещений в 1000 раз больших, (4000 мкм/с вместо 4мкм/с) чем экспериментальные.

Это можно было объяснить используя только законы статической физики. В 1 сек. частицы испытывают до 1020 толчков и перемещение частиц является источником их результирующего воздействия.

Теоретически обосновали броуновское движение Эйнштейн (1905) и Смолуховский (1906) – независимо друг от друга. Оба они приняли представление о среднем сдвиге частицы в двух координатах «x» и «y» как их проекции движения на плоскости.

Учитывая равновероятность отклонения от осей «x» и «y» (∟45˚) имеем

, или ;

Они установили также количественную связь между кв. средним сдвигом и коэффициентом диффузии Д.

1. С1 < С2 . Хаотичность броуновского движения приводит к равной вероятности перехода частиц из 1 в 2, т.е. половина частиц переместится вправо, половина влево.

Градиент конц. (с1 - с2) может быть выражен:

, подставив

Из первого закона Фика

Приравняем:

Уравнение Эйнштейна для диффузии:

,

где В – коэффициент трения;

- закон Стокса

- закон Эйнштейна-Смолуховского,

т.е. частицы перемещаются тем сильнее чем выше Т, τ и меньше η и r.

Экспериментально это уравнение было доказано Сведбергом (1909), Перреном (1910), Бойлем (1909), Милликеном (1910).

Сведберг – измерил сдвиг частиц коллоидного Ag от τ и η, что совпало с уравнением

Перрен – впервые экспериментально на системе гуммигут-H2O определил NA

Бойль – на табачном дыме, используя закон Энштейна-Смоулховского, определил заряд частиц аэрозоля.

Милликен – использовал систему масляного тумана, экспериментально определил заряд «e» очень точно.

ВЫВОДЫ:

Доказательство справедливости закона Эйнштейна-Смоулковского для коллоидных систем привела к фундаментальным выводам о применимости к истинным коллоидным системам законов молекулярно-кинетической теории, законов связанных с энтропией, т.е. коллоидные системы обладают свойствами гетерогенно-дисперсных систем и истинных растворов.