Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТФКП1.doc
Скачиваний:
186
Добавлен:
26.09.2019
Размер:
5.25 Mб
Скачать

5. Восстановление аналитической функции

по заданной действительной или мнимой части

Теорема 6. Для заданной функции u(x,y), гармонической в односвязной области G, существует бесконечное множество аналитических в G функций, действительной частью которых является u(x,y). Все они выражаются формулой

и отличаются между собой на чисто мнимую постоянную .

Доказательство.

Пусть дана гармоническая функция u(x,y). Для нахождения аналитической функции f(z)=u(x,y)+iv(x,y) необходимо найти мнимую часть v(x,y), которая дифференцируема в G и связана с u(x,y) условиями Коши – Римана:

, .

Так как u(x,y) известна, то известны её частные производные. Обозначим

,

Тогда условия Коши – Римана запишутся в виде:

. (9)

Т.к. u гармоническая функция, то она имеет непрерывные производные второго порядка, следовательно, существуют и непрерывны в G. Тогда уравнение Лапласа для функции u примет вид

. (10)

Т.к. непрерывны в G и удовлетворяют условию (10), то выражение P(x,y)dx+Q(x,y)dy является полным дифференциалом некоторой функции v0(x,y):

dv0(x,y)=P(x,y)dx+Q(x,y)dy

и ,

где интеграл по кривой, соединяющий точки (x0,y0) и (x,y) в , не зависит от пути интегрирования. Имеем . Надо найти функцию v(x,y) удовлетворяющую условиям (9). Следовательно,

.

Учитывая обозначения, получим

. (11)

Следовательно, функция f(z)= u(x,y)+iv(x,y), где v(x,y) определяется соотношением (11), является аналитической функцией (u и v-дифференцируемы и связаны условиями Коши-Римана). Итак, .

Аналогично можно показать, что для любой функции v(x,y), гармонической на области G существует аналитическая в G функция f(z)=u(x,y)+iv(x,y), мнимая часть которой равна v(x,y). Эта функция определяется с точностью до постоянного слагаемого .

Пример. Выяснить, существует ли аналитическая функция f(z), такая, что Ref(z)=u(x,y)=exsiny.

∆ Выясним, является ли u(x,y) гармонической:

- непрерывны на и .

С ледовательно, u – гармоническая функция на .

Найдем v(x,y) из условий Коши-Римана

, .

,

причем в качестве точки (x0,y0) можно взять любую точку плоскости, например (0;0). Получим

.

Тогда

, . 

6. Геометрический смысл аргумента и модуля производной

I. Геометрический смысл аргумента производной

1 ) Пусть z=λ(t) – комплексная функция действительной переменной от t, t[α,β]. Она определяет непрерывную кривую L: z=λ(t)=x(t)+iy(t), t[α,β]. Пусть существует λ(t0), для некоторого t0[α,β]. Покажем, что тогда в точке z0=λ(t0) кривой L, существует касательная T, причем угол θ между T и Ox совпадает с Arg λ(t0). Проведем секущую Р через точки z0=λ(t0) и z1=λ(t1)L.

z0=x0+iy0, где z1=x1+iy1, где

Угол между Р и Ох: . Рассмотрим вектор

Следовательно, .

Значит, направление секущей совпадает с направлением вектора. Поэтому секущая имеет предельное положение, если угол между и Ох, равный , имеет предел при tt0. Т.к. , то .

Итак, если z=λ(t) – комплексно-значная функция действительной переменной имеет производную в некоторой точке t0, то она имеет касательную в точке z0=λ(t0). При этом угол наклона касательной к оси Ох равен аргументу производной.

2 )Пусть w=f(z)-аналитическая в некоторой области G функция, причем f(z0)≠0, z0 G.

Проведем через точку z0G кривую L: z=λ(t), t[α,β], z0=λ(t0), для которой λ(t0)≠0, тогда по п.1 в точке z0 существует касательная с углом наклона Argλ(t0). При отображении w=f(z) кривая L перейдет в кривую Λ, расположенную в плоскости uOv. Λ: w=f(λ(t))=μ(t), αtβ, μ(t0)=f(z0)=w0. По правилу дифференцирования сложной функции существует (t0)=f(z0)λ(t0)≠0. Следовательно, и у кривой Λ в точке w0=f(z0) существует касательная, причем угол между касательной и осью Ох равен:

Arg(t0)=Arg[f(z0)λ(t0)]=Argf(z0)+Argλ(t0). Отсюда

Arg μ(t0)-Argλ(t0)=Argf(z0) - (*)

на эту величину изменяется угол наклона касательной при переходе от кривой L к кривой Λ.

Итак, геометрический смысл аргумента производной состоит в следующем: аргумент производной в точке z0 равен углу поворота касательной к кривой L в точке z0 при переходе к её образу Λ и к точке w0=f(z0).

Р ассмотрим теперь две кривые L1 и L2 проходящие через точку z0. Обозначим через φ1 и φ2 углы наклона касательных к ним в точке z0. Образами кривых L1 и L2 являются кривые Λ1 и Λ2 с углами наклона в точке w0=f(z0) ψ1 и ψ2. Из (*) следует Argf(z0)=ψ1-φ1=ψ2-φ2, следовательно, ψ1-ψ2=φ1-φ2.

Таким образом, отображение w=f(z), где f(z) аналитическая в точке z0 функция и f(z0)≠0 сохраняет углы между кривыми, проходящими через точку z0, при этом сохраняется не только величины, но и направление отсчета.

II.Геометрический смысл модуля производной

Лемма. Если существует , то существует .

Доказательство.

f(z)=u(x,y)+iv(x,y), A=a+ib, z0=x0+iy0.

.

Пусть f(z)-аналитическая в некоторой области G и в некоторой точке z0G f(z0)≠0. При отображении w=f(z) точка z0L переходит в точку w0=f(z0)Λ, любая точка zL переходит в точку w=f(z)Λ,z=z-z0,w=f(z)-f(z0)=w-w0.

Т . к. существует , то по лемме . Следовательно, |∆w|=|f(z0)||∆z|+o(|∆z|). Зафиксируем достаточно малое число ρ>0. Рассмотрим окружность |z-z0|=ρ или |∆z|=ρ. Функция w=f(z) окружность |z-z0|=ρ (|∆z|=ρ) отобразит на кривую |∆w|=|f(z0)|ρ+(). Она мало отличается от окружности |∆w|=|f(z0)|ρ, т.е. отображение w=f(z) с точностью до бесконечно малого более высокого порядка, чем z, растягивает окрестность точки z0 в раз.

называется коэффициентом растяжения кривой в точке z0 при отображении w=f(z). Коэффициент не зависит от вида кривой и равен |f(z0)|. При k>1 происходит растяжение, а при k<1 сжатие.

Итак, модуль производной f(z0) геометрически можно рассматривать как растяжение окрестности точки z0 при отображении посредством функции w=f(z).

Таким образом, если функция f(z) аналитическая в точке z0 и f(z0)≠0, то все кривые, проходящие через точку z0, при отображении w=f(z) поворачиваются на один и тот же угол Arg f(z0) и получают одно и то же растяжение с коэффициентом |f(z0)|.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]