Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
детали машин и основы.docx
Скачиваний:
54
Добавлен:
16.11.2019
Размер:
4.83 Mб
Скачать

6.6. Передаточное отношение

Окружные скорости ведущего и ведомого шкивов соответственно

v1 = πd1n1 /60 000 и v2 = πd2n2 /60 000,

где n1 и n2 – частоты вращения ведущего и ведомого шкивов, мин-1; d1 и d2 –- диаметры этих шкивов, мм.

Передаточное отношение ременной передачи:

u = n1 /n2 = v1d2/ (v2d1) = d2/ [d1 (1– ξ) ]

Упругое скольжение, зависящее от значения окружной силы Ft, является причиной некоторого непостоянства передаточного отношения ременных передач.

При проектировании рекомендуют принимать для передач плоским ремнем и ≤ 5, клиновым и ≤ 7, поликлиновым и ≤ 8, зубчатым и ≤ 12.

6.7. Критерии работоспособности и расчета ременной передачи

Основные критерии работоспособности и расчета ременных передач: тяговая способность (прочность сцепления ремня со швом) и долговечность ремня.

Расчет по тяговой способности является основным расчетом ременных передач, обеспечивающим одновременно и прочность ремней, и передачу ими требуемой нагрузки.

Тяговую способность характеризует окружная сила Ft или полезное напряжение σt при данном натяжении силой F0 ремня и скольжении ξ. Тяговая способность тем выше, чем больше угол обхвата α, коэффициент трения между ремнем и шкивом, сила F0 предварительного натяжения. Тяговая способность понижается с увеличением скорости ремня из-за действия центробежных сил.

Расчет на долговечность выполняют как проверочный.

Тяговая способность ременной передачи обусловлена сцеплением ремня со шкивами. Экспериментально исследуя тяговую способность, строят графики – кривые скольжения и КПД (рис. 6.8); на их базе разработан метол расчета ременных передач. При постоянной силе предварительного натяжения F0 кривые скольжения устанавливают связь между окружной силой Ft (тягой) и относительным скольжением. При построении гра­фика по оси абсцисс откла­дывают относительную на­грузку, выраженную через коэффициент тяги φ: φ = Ft /( F1 + F2) = Ft / (2F0) = σt /(2 σ0), а по оси ординат – коэффициент скольжения. При испытании по­степенно увеличивают полезную нагрузку Ft (коэффициент тяги φ), сохраняя постоянным предварительное натяжение F1 + F2 = = 2F0, замеряют окружные скорости шкивов и вычисляют скольжение.

При возрастании коэффициента тяги от нуля до некоторого зна­чения φК, называемого критическим (рис. 6.8), наблюдают только упругое скольжение ремня по шкиву. В этой зоне упругие деформации ремня приближенно соответствуют закону Гука, поэтому кривая скольже­ния близка к прямой. Этот участок характеризует устойчивую рабо­ту ремня. При дальнейшем увеличении к оэффициента тяги от φК до φmax наблюдают как упругое скольжение, так и частичное пробук­совывание, которое по мере увеличения φ растет. Работа передачи становится неустойчивой. При φmах окружная сила Ft достигает зна­чения максимальной силы трения, дуга покоя полностью исчезает, а дуга скольжения β1 распространяется на весь угол обхвата α1 – наступает полное буксование ремня на ведущем шкиве.

Рис. 6.8. Кривые скольжения и КПД

6.8. Потери в передаче и кпд. Долговечность ремня

Потери в передаче и КПД. При работе ременной передачи возникают потери на: упругий гистерезис, скольжение ремня по шкивам, трение в подшипниках опор и аэродинамические сопротив­ления. В клиноременной передаче дополнительно возникают потери на радиальное скольжение ремня в канавке и на его поперечное сжа­тие. Наибольшая доля потерь приходится на гистерезис при изгибе, особенно для клиноременных передач. Потери, связанные с изгибом и аэродинамическим сопротивлением, не зависят от передаваемой нагрузки. Поэтому КПД передачи при малых нагрузках невысок, так как велики относительные потери. Он достигает максимума ηmaх в зоне критического значения φК (рис. 6.8).

В диапазоне значений коэффициента тяги от φК до φmax к уп­ругому скольжению прибавляется частичное буксование, которое вызывает изнашивание и нагрев ремня, а также резкое снижение КПД передачи вследствие увеличения потерь на скольжение.

Согласно кривым скольжения и КПД передаваемую силу Ft следует принимать вблизи значения φК , которому соответствует ηmax. При нормальных условиях работы для передачи плоским рем­нем ηmax = 0,95 ... 0,97; для передачи клиновым и поликлиновым ремнем ηmax = 0,92 ... 0,96. Работу передачи при φ > φК можно до­пускать только при кратковременных перегрузках, например в пери­од пуска.

Критерием рациональной работы ремня служит коэффициент тяги φК значение которого определяет допускаемую окружную силу [F t].

Из формулы

φ = Ft /( F1 + F2) = Ft / (2F0) = σt /(2 σ0)

следует:

[F t] = 2 φК F0.

Значения φК установлены экспериментально для каждого типа ремня: для плоских ремней φК = 0,4 ... 0,5; для клиновых и поли­клиновых φК = 0,7..,0,8.

Долговечность ремня зависит не только от значений напряже­ний, но и от характера их изменения за один цикл, а также от числа таких циклов. Поскольку напряжения изгиба превышают все другие составляющие суммарного напряжения в ремне, то дол­говечность в большой степени зависит от числа изгибов ремня на шкивах. Следует иметь в виду, что за один пробег ремня в передаче с u = 1 в нем дважды действуют максимальные напряжения (ремень испытывает два изгиба на шкивах равного диаметра). Одной из со­ставляющих напряжений является напряжение от силы F0 предварительного натяжения ремня. Чем больше F0 , тем выше тяговая спо­собность передачи, но ниже долговечность ремня.

Под влиянием циклического деформирования в ремне возника­ют усталостные разрушения – трещины, надрывы, расслаивание ремня. Снижению сопротивления усталости способствует нагрев ремня от внутреннего трения и от скольжения его по шкивам.

Полный цикл напряжений соответствует одному пробегу ремня по шкивам, при котором уровень напряжений в поперечном сечении ремня меняется в соответствии с прохождением им каждого из четырех характерных участков: два шкива, ведомая и ведущая ветви

Число пробегов ремня (число циклов нагружения) за весь срок работы передачи пропорционально частоте пробегов:

υ = ν/ Lр ≤ [ν],

где v – скорость ремня, м/с; Lр – длина ремня, м; [υ] – допускаемая частота пробегов, с-1.

Частота пробегов является показателем долговечности рем­ня: чем больше υ, тем больше число циклов при том же времени рабо­ты или тем меньше долговечность при том же уровне напряжений.

Для достижения средней долговечности в 2000...3000 ч реко­мендуют ограничивать частоту пробегов, принимая для ремней:

  • плоских (прорезиненных-синтетических) [υ] < 10 – 50 с-1;

  • клиновых [υ] < 20 с-1;

  • поликлиновых [υ] < 30 с-1.

В основе уточненных методов расчета ремней на долговеч­ность лежит уравнение кривой усталости

σqmax NE = С,

где q и С – опытные постоянные; σmах – наибольшее напряжение, определяемое в п. 8.4; NE эквивалентное число циклов нагружения,

NE = 3600 υ zшк Lh / kи .

Здесь υ – частота пробегов ремня, с-1; zшк число шкивов в пе­редаче; Lhресурс ремня, ч; kи коэффициент, учитывающий раз­ную степень изгиба ремня на меньшем и большем шкивах. При и = 1 kи = 1; с увеличением передаточного отношения и влияние изгиба на большем шкиве уменьшается, а значение kи возрастает, приближаясь к значению zшк.