Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

естественно

.PDF
Скачиваний:
80
Добавлен:
01.11.2017
Размер:
6.96 Mб
Скачать

231

Рис. 52. Центры бодрствования" в головном мозге человека. Схематическое изображение сагиттального среза мозга человека, на который нанесены области мозга и соответствующие нейропередатчики, а также пути, вовлеченные в генерацию и поддержание бодрствования.

Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотического давления плазмы, количества и состав гормонов крови.

Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимулировать эти ядра (рис. 53). Оказалось, что стимуляция некоторых ядер приводила к негативной реакции. Животные после однократной самостимуляции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.

Опыт с самораздражением Олдса

232

 

Рис. 53. Опыт с самораздражением Олдса.

Исследования Дельгадо (Delgado) во время хирургических операций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопровождаться ускорением полового созревания, нарушением менструального цикла, половой функции.

Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию.

Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению просвета артериальных сосудов, сокращениям желчного, мочевого пузырей. Могут возникать взрывы ярости с описанными симпатическими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало нарушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

Гипоталамус является также центром регуляции цикла бодрствование — сон. При этом задний гипоталамус активизирует бодрствование, стимуляция переднего вызывает сон. Повреждение заднего гипоталамуса может вызвать так называемый летаргический сон.

233

3.7.6. Мозжечок

Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Особенности морфофункциональной организации и связи мозжечка. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1)кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;

2)основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;

3)на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;

4)выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

О. Ларсел всю поверхность мозжечка разделяет на несколько отделов, главным образом, в зависимости от филогенетического возраста. Эти отделы следующие:

1. Архицеребеллум (archicerebellum) (древний мозжечок)

вестибулярный мозжечок — относится клочковофлоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия.

2. Палеоцеребеллум (paleocerebellum) (старый мозжечок)

спинальный мозжечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов.

3. Неоцеребеллум (neocerebellum) (новый мозжечок) включает в себя кору полушарий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-

234

мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

Кора мозжечка имеет специфическое, нигде в ЦНС не повторяющееся, строение По данным Фанарджяна, в коре мозжечка имеется пять типов клеток: 1) клетки Пуркинье, 2) корзинчатые клетки, 3) звездчатые клетки, 4) клетки Гольджи, 5) зернистые клетки. Верхний (I) слой коры мозжечка — молекулярный слой, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обеспечивают взаимодействие клеток Пуркинье.

Средний (II) слой коры образован клетками Пуркинье, выстроенными в один ряд и имеющими самую мощную в ЦНС дендритную систему. На дендритном поле одной клетки Пуркинье может быть до 60 000 синапсов. Следовательно, эти клетки выполняют задачу сбора, обработки и передачи информации. Аксоны клеток Пуркинье являются единственным путем, с помощью которого кора мозжечка передает информацию в его ядра и ядра структуры большого мозга.

Под II слоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т- образно делятся на поверхности коры, образуя дорожки контактов с клетками Пуркинье. Здесь же лежат клетки Гольджи.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.

Мозжечок имеет широко развитые связи, по существу, со всеми структурами головного мозга, а также со спинным мозгом. Основные афферентные пути мозжечка следующие:

1.Дорсальный спинно-мозжечковый тракт.

2.Вентральный спинно-мозжечковый тракт, проводящий проприоцептивную афферентацию от задней части тела.

235

3.Ростральный спинно-мозжечковый тракт, проводящий проприоцептивную афферентацию от передней части тела.

4.Спинно-оливо-мозжечковый тракт.

5.Церебро-мозжечковые связи. По данным связям афферентация поступает в мозжечок из "моторной" области коры больших полушарий головного мозга.

6.Кортико-ретикуло-мозжечковый путь.

7.Оливо-мозжечковый тракт. Данный путь проводит афферентацию из области олив в мозжечок.

8.Вестибуломозжечковый путь передает афферентацию от вестибулярных ядер в мозжечок.

9.Рубро-мозжечковые связи, передающие афферентацию из красных ядер в мозжечок.

10.Ретикуло-мозжечковые связи проводят афферентацию

ккоре полушарий мозжечка от латерального, парамедиального ядер продолговатого мозга, от ядра покрышки варолиева моста, от ретикулярного гигантоклеточного ядра.

11.Выявлены проводящие пути от структур базальных ганглиев к мозжечку.

Все афферентные пути оканчиваются в виде трех видов волокон. Мшистые волокна идут от ядер моста и оканчиваются в зернистом слое коры мозжечка. Листовидные, или лазающие, волокна идут от нижних олив. Данные волокна представляют уникальный компонент организации коры мозжечка. Одно лиановидное волокно устанавливает синаптический контакт только с одной клеткой Пуркинье. На уровне слоя клеток Пуркинье данные волокна теряют миелин и проходят параллельно телу и дендритам клеток Пуркинье. Лиановидные волокна, проходя через зернистый слой, отдают коллатерали на синапсы дендритов зернистых клеток, соме клеток Гольджи, клеток Лугаро. Третья афферентная система - моноаминоэргические связи. Эта система включает норадренэргические, серотонинэргические и дофаминэргические волокна.

Источником норадренэргических волокон является голубое пятно. Волокна от голубого пятна идут ко всем ядрам мозжечка, проходят через зернистый слой, а затем оплетают клетки Пуркинье и вступают в молекулярный слой. Дофаминэргические волокна поступают в мозжечок из области покрышки среднего

236

мозга. Эти волокна образуют синаптические контакты с клетками Пуркинье и зернистыми клетками. Источником серотонинэргических волокон являются ядра продолговатого, среднего мозга и моста.

Основные эфферентные пути мозжечка следующие. Установлено, что аксоны клеток Пуркинье, являющиеся тормозными нейронами, составляют единственный эфферентный путь. Но волокна, составляющие этот эфферентный путь, осуществляют проведение преимущественно, если не исключительно, тормозящих влияний к многочисленным структурам центральной нервной системы: спинному мозгу, к ядрам продолговатого, среднего и промежуточного мозга, центрам экстрапирамидной системы, "моторной" области коры головного мозга. Следует отметить, что моховидные волокна проводят афферентацию возбуждающего характера. Лиановидные волокна, опосредованные через нейроны Пуркинье, отчасти через корзинчатые и звездчатые нейроны, проводят афферентацию тормозящего характера.

Таким образом, мозжечок может оказывать разнообразные влияния -возбуждающие и тормозящие на различные отделы центральной нервной системы.

Важную функциональную роль играют ядра мозжечка. В белом веществе мозжечка расположены следующие парные ядра: ядра шатра, пробковидные, шаровидные и зубчатые ядра. Отмеченные ядра имеют связи с многочисленными структурами центральной нервной системы (спинным мозгом, продолговатым мозгом, мостом, средним и промежуточным мозгом, моторной зоной коры больших полушарий).

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.

Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него — с мо-

237

торной зоной коры большого мозга.

Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже

— 1—3 импульса в секунду.

Стимуляция верхнего слоя коры мозжечка приводит к длительному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сигналах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы выглядят в форме позитивного колебания (торможение активности коры, гиперполяризация клеток Пуркинье), которое наступает через 15— 20 мс и длится 20—30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).

Для изучения функций мозжечка используются различные методы. Основными являются: метод клинических наблюдений, метод экстирпации (удаления), раздражения, электрофизиологические методы.

Удаление мозжечка позволило прежде всего выявить его особую роль в интеграции информации, необходимой для регуляции двигательных реакций (Моруцци, 1958; Аршавский, 1976; Григорян, 1976 и др.). Установлены основные функции мозжечка в регуляции двигательной активности: 1) регуляция позы и мышечного тонуса; 2) коррекция медленных целенаправленных движений; 3) обеспечение выполнения быстрых целенаправленных движений. После удаления мозжечка выявляются следующие нарушения (симптомы нарушения функции мозжечка):

1.Асинергия - отсутствие посылки должного количества импульсов к различным мышцам, выполняющим движения. Это приводит к тому, что движения выполняются или в избыточном, или недостаточном объеме. Наблюдается неправильная походка с широко расставленными ногами и избыточным объемом двигательных реакций. Данный симптом впервые описан Бабинским в 1899 году.

2.Астазия - колебательные движения головы и туло-

238

вища. Тремор усиливается во время двигательной активности, в состоянии покоя тремор исчезает.

3.Атаксия - нарушение величины, силы, скорости, направления двигательных реакций. Движения утрачивают плавность и стабильность, развивается дисметрия (неправильная оценка расстояния).

4.Гипотония - понижение мышечного тонуса. Чаще развиваются волнообразные изменения тонуса: гипотония сменяется повышением тонуса мышц, в дальнейшем снова происходит понижение тонуса мышц и так далее.

5.Нистагм - непроизвольные движения глазных яблок.

6.Головокружение.

7.Дефекты речи. Развивается скандированная речь.

8.Астения - быстрая утомляемость.

Следует отметить, что характер влияния на тонус мышц определяется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышцразгибателей снижается, при низкой (2—10 имп/с) — увеличивается.

Промежуточная область коры мозжечка получает информацию по спинальным трактам от двигательной области коры большого мозга (прецентральной извилины), по коллатералям пирамидного пути, идущего в спинной мозг. Коллатерали заходят в мост, а оттуда — в кору мозжечка. Следовательно, за счет коллатералей мозжечок получает информацию о готовящемся произвольном движении, и возможность участвовать в обеспечении тонуса мышц, необходимого для реализации этого движения.

Латеральная кора мозжечка получает информацию из двигательной области коры большого мозга. В свою очередь латеральная кора посылает информацию в зубчатое ядро мозжечка, отсюда по мозжечково-кортикальному пути в сенсомоторную область коры большого мозга (постцентральная извилина), а через мозжечково-рубральный путь к красному ядру и от него по руброспинальному пути к передним рогам спинного мозга. Параллельно сигналы по пирамидному пути идут к тем же передним рогам спинного мозга.

Таким образом, мозжечок, получив информацию о гото-

239

вящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.

Изменение тонуса мышц после повреждения мозжечка обусловлено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бесконтрольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей.

При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов сухожилий, мышц, надкостницы, оболочек суставов), но в этом случае снимается тормозное влияние на мотонейроны спинного мозга ретикулярной формации продолговатого мозга.

В норме мозжечок активирует пирамидные нейроны коры большого мозга, которые тормозят активность мотонейронов спинного мозга. Чем больше мозжечок активирует пирамидные нейроны коры, тем более выражено торможение мотонейронов спинного мозга. При повреждении мозжечка это торможение исчезает, так как активация пирамидных клеток прекращается.

Таким образом, в случае повреждения мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолговатого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а следовательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от продолговатого мозга при одновременном уменьшении тормозных влияний от коры большого мозга (после повреждения структур мозжечка), мотонейроны спинного мозга активируются и вызывают гипертонус мышц.

Многообразие симптомов, которые развиваются после удаления мозжечка, по-видимому, объясняется обилием эфферентных связей данной структуры с различными отделами

240

центральной нервной системы. Возможно, мозжечок согласует работу различных структур в единую систему, которая определяет адекватность и совершенство двигательных реакций. Имеются и другие мнения о значении мозжечка в регуляции двигательных реакций. Так, Виннер (1961) считает, что мозжечок играет роль системы, которая предупреждает возникновение колебательных режимов при выполнении движений. Рух (1951) рассматривает мозжечок как своеобразный блок, который обеспечивает сравнение команд, посылаемых корковыми центрами регуляции движений с реальным ходом их выполнения. На основании такого сравнения мозжечок коррегирует работу исполнительных двигательных центров. Брайтенберг (1967) считает, что мозжечок осуществляет точное измерение временных интервалов между афферентными сигналами.

С 30-х годов XX века были предприняты систематические исследования Л.А. Орбели, посвященные значению мозжечка в регуляции вегетативных функций. Установлена роль мозжечка в регуляции многих вегетативных функций: пищеварения, дыхания, сосудистого тонуса, деятельности сердца, терморегуляции, обмене веществ и других.

Взаимодействие мозжечка и коры большого мозга. Это взаимодействие организовано соматотопически. Функционально мозжечок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры большого мозга.

Роль взаимодействия лобной доли коры большого мозга с мозжечком хорошо проявляется при частичных повреждениях мозжечка. Одномоментное удаление мозжечка приводит к гибели человека, в то же время, если удаляется часть мозжечка, это вмешательство, как правило, не смертельно. После операции частичного удаления мозжечка возникают симптомы его повреждения (тремор, атаксия, астения и т. д.), которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызываемые повреждением мозжечка. Механизм данной компенсации ре-