Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ммпур методичка.DOC
Скачиваний:
103
Добавлен:
16.12.2018
Размер:
5.47 Mб
Скачать

Краткая классификация методов математического программирования.

В зависимости от особенностей целевой функции z x ) и функций, задающих ограничения i ( x ), задачи математического программирования делятся на ряд типов.

Если целевая функция Z z ( x ) и функции i ( x ) ( i =  ), входящие в систему ограничений, линейны (первой степени) относительно входящих в задачу неизвестных xj, то такой раздел математического программирования называется линейным программированием (ЛП). Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач.

Однако при более глубоком исследовании в ряде задач появляются и связи нелинейного характера. Поэтому вслед за разработкой моделей линейного программирования начались интенсивные исследования нелинейных моделей.

Если в задаче математического программирования целевая функция z ( x ) и (или) хотя бы одна из функций системы ограничений i ( x ) нелинейна, то такой раздел называется нелинейным программированием (НЛП). Методы НЛП получили широкое применение при расчете экономически выгодных партий запуска деталей в производство, при определении экономически выгодной партии поставки, распределении ограниченных ресурсов, размещении производительных сил и т. д.

Если на все или некоторые переменные xj наложено условие дискретности, например целочисленности ( xj = 0, 1, 2 ...), то такие задачи рассматриваются в разделе математического программирования, называемом дискретным, в частности целочисленным (ЦП), программированием. Методами ЦП решается широкий круг задач оптимизации с неделимостями, комбинаторного типа, с логическими условиями, с разрывной целевой функцией и т. д. В частности, задачи выбора (о назначениях), о маршрутизации, теории расписаний, комплектных поставок и т. д.

Если параметры целевой функции и (или) системы ограничений изменяются во времени, то такие задачи решаются методами динамического программирования (ДП). Методами ДП могут решаться задачи перспективного и текущего планирования, управления производством, поставками и запасами в условиях изменяющегося спроса, распределения ограниченных ресурсов и т. д.

В перечисленных выше разделах математического программирования предполагается, что вся информация о протекании процессов заранее известна и достоверна. Такие методы оптимизации называются детерминированными или методами обоснования решений в условиях определенности.

Если параметры, входящие в функцию цели, или ограничения задачи являются случайными, недостоверными величинами или если приходится принимать решения в условиях риска, неполной или недостоверной информации, то говорят о проблеме стохастической оптимизации, а соответствующий раздел называется стохастическим программированием (СП). К нему в первую очередь следует отнести методы и модели выработки решений в условиях конфликтных ситуаций (математическая теория игр), в условиях неполной информации (экспертные оценки), в условиях риска (статистические решения) и другие.

К математическому программированию относятся также методы решения экстремальных задач с бесконечным числом переменных — бесконечномерное программирование.

И, наконец, отметим, что задачи математического программирования с одной целевой функцией решаются методами скалярной оптимизации. Однако в реальных ситуациях нередко приходится одновременно учитывать несколько целевых функций, которые должны принимать экстремальные значения. Например, дать продукции больше, высокого качества и с минимальными затратами. Задачи, где находят решение по нескольким целевым функциям, относятся к векторной оптимизации — это так называемые задачи многокритериального подхода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]