Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Материаловедение

.pdf
Скачиваний:
40
Добавлен:
08.02.2019
Размер:
2.9 Mб
Скачать

3.1. Собственные дефекты

101

Рис. 3.9. Схема пластического скольжения, осуществляемого путем перемещения краевой дислокации.

2.Энергия дислокации — это энергия, которая затрачивается на искажение решетки при образовании дислокации. Она складывается из упругой энергии искажений решетки и неупругой энергии ядра дислокации.6 Оценка упругой энергии, приходящейся на одно межатомное расстояние вдоль дислокации в структуре типа алмаза, показала, что Eуп Gb2, где G — модуль сдвига, и составляет 4–5 эВ [29]. Если учесть, что реальная длина дислокаций превышает десятки межатомных расстояний, и учесть неупругую энергию ядра дислокации (Eнеуп ≈ 0.1Eуп), то ясно, что даже при температурах, близких к температуре плавления, дислокации не могут образовываться в результате тепловых флуктуаций. Таким образом, дислокации не являются равновесными дефектами.

3.Под действием внешних сил дислокации могут перемещаться скольжением и переползанием, при этом дислокации передвигаются как вдоль плоскостей скольжения,7 так и перпендикулярно им соответственно. Движение дислокаций связано с пластической деформацией кристал-

ла. Экспериментальные данные показывают, что дислокации могут двигаться со скоростями от 10−9 м/с до 10−3 м/с в зависимости от материала

иприложенного напряжения. Однако скорость дислокации в кристалле не может быть больше скорости звука, так как перемещение дислокации есть перемещение волны упругой деформации.

Перемещение дислокаций в плоскости скольжения называется скольжением. Такое движение дислокаций можно в определенном смысле представить как следствие пластической деформации кристалла, связанное с коллективным перемещением атомов. В результате скольжения одной дислокации через весь кристалл происходит пластический сдвиг на одно межатомное расстояние. Однако в каждый данный момент сдвиг происходит не по всей плоскости скольжения одновременно, а путем

6

˚

 

В области радиусом в несколько межатомных расстояний (≈5–10 A), называемой ядром

дислокации, искажения решетки настолько велики, что не могут быть описаны в рамках теории упругости.

7Плоскость скольжения для простейшего случая прямолинейной дислокации определяется как плоскость, в которой лежат вектор Бюргерса дислокации и линия дислокации.

102

Глава 3. Дефекты в полупроводниковых материалах

последовательного перемещения атомов, находящихся у линии дислокации. Так, например, при движении краевой дислокации по плоскости скольжения (рис. 3.9) разрываются и пересоединяются связи между атомами, лежащими у линии дислокации, и при этом эти атомы совершают небольшие перемещения. В результате лишняя полуплоскость, занимавшая определенное положение в кристаллической решетке, соединяется с атомной плоскостью, находящейся под плоскостью скольжения, а соседняя атомная плоскость становится теперь лишней полуплоскостью. Таким образом, поскольку скольжение происходит путем последовательного перемещения атомов на небольшие расстояния, то для движения дислокаций в плоскости скольжения достаточно внешних напряжений намного меньших, чем напряжения, необходимые для пластической деформации совершенного кристалла без дислокаций.

Плавное движение возможно и для винтовой дислокации. Однако все плоскости, которые содержат винтовую дислокацию, содержат и вектор Бюргерса, поэтому винтовая дислокация, в отличие от краевой, может скользить в любом направлении. Следовательно, все плоскости, содержащие винтовую дислокацию, являются плоскостями плавного скольжения.

Переползание дислокаций происходит, как правило, перпендикулярно плоскости ее скольжения и осуществляется или присоединением вакансий (приток вакансий), или присоединением атомов (приток междоузельных атомов) к краю полуплоскости, при этом полуплоскость смещается на одно межатомное расстояние (рис. 3.10).8 На рис. 3.10 представлена краевая дислокация, линия дислокации которой переходит с одной плоскости скольжения на другую, расположенную на одно межплоскостное расстояние выше. Когда вакансия подходит к ступеньке, последняя смещается на одно межплоскостное расстояние, а сама вакансия исчезает. Аналогично поглощаются и междоузельные атомы. Смещение дислокации происходит в противоположных направлениях при поглощении вакансии или междоузельного атома. Оба процесса требуют диффузионного перемещения вакансий или междоузельных атомов к дислокации. Такое движение, носящее диффузионный характер, является результатом стремления системы к уменьшению свободной энергии за счет уменьшения упругой энергии решетки (см. п. 7). Наличие незаполненных (ненасыщенных) связей у атомов полуплоскости облегчает отрыв атомов и вакансий от дислокации или присоединение междоузельных атомов и вакансий к дислокации. Так как скорость диффузии быстро уменьшается с понижением температуры (см. гл. 8), то переползание (в отличие

8Обратный процесс — испускание точечных дефектов краевой дислокацией — является основным источником термодинамически равновесных точечных дефектов.

3.1. Собственные дефекты

103

Рис. 3.10. Схема переползания краевой дислокации при поглощении вакансии. Буквой A обозначена ступенька, к которой присоединяется вакансия.

от скольжения) происходит с заметной скоростью только при достаточно высоких температурах.

Рассмотренный механизм переползания дислокации применим к любой дислокации, содержащей краевую компоненту. Однако винтовая дислокация не имеет «лишней» полуплоскости, поэтому переползание для винтовой дислокации в общепринятом смысле невозможно. Тем не менее, если линия винтовой дислокации скручивается в спираль, то такая спираль имеет краевую компоненту и, следовательно, получает возможность переползать. Переползание в этом случае вызывает расширение спирали в радиальном направлении. Таким образом, переползание винтовых дислокаций превращает их в геликоидальные (изогнутые по цилиндрической спирали с осью вдоль вектора Бюргерса).

4. Так как поля упругих напряжений вокруг отдельных дислокаций могут перекрываться, то дислокации могут взаимодействовать друг с другом (притягиваться, отталкиваться), если это взаимодействие приводит к уменьшению упругой энергии кристалла. Так, если сумма энергий двух дислокаций больше (меньше) энергии дислокации, образующейся при слиянии этих дислокаций в одну, то эти дислокации будут притягиваться (отталкиваться) и объединяться (распадаться) в одну (на две). Например, при сближении двух дислокаций, расположенных в одной плоскости скольжения, с одинаковыми, но противоположно направленными векторами Бюргерса сжатие и растяжение кристалла по обе стороны от плоскости скольжения взаимно компенсируются, а при сближении двух дислокаций с одинаково направленными векторами Бюргерса — увеличивается. Поэтому параллельные винтовые и параллельные краевые дислокации, лежащие в общей плоскости или в одной плоско-

104

Глава 3. Дефекты в полупроводниковых материалах

сти скольжения, взаимодействуют так же, как заряженные нити: разноименные притягиваются, а одноименные отталкиваются с силой, обратно пропорциональной расстоянию. В общем случае взаимодействие дислокаций носит более сложный характер, зависящий от взаимной ориентации векторов Бюргерса дислокаций, однако обычно действует упрощенное правило: две дислокации притягиваются, если их вектора Бюргерса составляют тупой угол, и отталкиваются, — если острый.

5. Число различных типов дислокаций в реальных кристаллах конечно. Каждая решетка Браве имеет свой, присущий только ей, набор возможных дислокаций с определенными векторами Бюргерса. Основная причина появления этого свойства заключается в том, что в общем случае вектор Бюргерса — это векторная сумма векторов трансляций решетки, взятых с целочисленными коэффициентами. Поэтому величина и направление возможных b ограничены рядом дискретных значений, определяемых структурой решетки. С другой стороны, как было показано в п. 2, упругая энергия искажений решетки при наличии дислокаций пропорциональна квадрату вектора Бюргерса. Поэтому для каждого типа кристаллической решетки существуют дислокации с наименьшими векторами Бюргерса, которые обладают наименьшей энергией, наиболее энергетически устойчивы против расщепления и наиболее подвижны. Как правило, такими дислокациями являются полные дислокации, то есть дислокации, вектор Бюргерса которых равен вектору трансляции решетки. Так, в кристаллах с о.ц.к. решеткой минимальной энергией обладают дислокации с векторами Бюргерса (a/2)<111>, в кристаллах с г.ц.к. решеткой — с векторами Бюргерса (a/2)<110>. Эти дислокации наиболее распространены в названных решетках. В качестве примера рассмотрим дислокации в структуре типа алмаза.

В структуре типа алмаза энергетически наиболее выгодны дислокации с вектором Бюргерса (a/2)<110>. Любое сложное перемещение в решетке можно рассматривать как сумму последовательных трансляций в направлениях <110>. Поэтому линии простых дислокаций должны быть направлены вдоль какого-либо из направлений <110>. В решетке алмаза возможны 9 различных типов дислокаций, из которых три являются простыми, а остальные — сложными (см. табл. 3.1). Покажем это.

Рассмотрим тетраэдр, образованный направлениями <110> и вписанный в куб (рис. 3.11). Вектор Бюргерса (a/2)<110> направлен вдоль ребра BC тетраэдра. Каждое ребро такого тетраэдра представляет собой линию простой дислокации, а суммирование двух ребер тетраэдра приводит к образованию линии сложной дислокации из линий двух простых дислокаций. Сложные дислокации возникают, когда линия дислокации

3.1. Собственные дефекты

105

Рис. 3.11. Тетраэдр с ребрами вдоль направлений <110>.

последовательно меняет свою ориентировку от одного из направлений <110> к другому и в общем случае оказывается непараллельной ни одному из направлений типа <110>. Различные комбинации ребер при суммировании дают весь возможный набор сложных дислокаций.

Из табл. 3.1 следует, что к простым дислокациям в структуре типа алмаза относятся: винтовая (линия дислокации совпадает с вектором Бюргерса) (рис. 3.12,а), краевая с плоскостью скольжения {100} (линия дислокации перпендикулярна вектору Бюргерса) (рис. 3.12,в) и 60-гра- дусная дислокация с плоскостью скольжения {111} (вектор Бюргерса образует угол 60с линией дислокации) (рис. 3.12,б). Остальные дислокации — сложные.

Дислокации в структурах типа сфалерита, NaCl, вюртцита подробно рассмотрены в [27].

6.Характерной особенностью краевых и 60-градусных дислокаций является то, что атомы, образующие край атомной полуплоскости, имеют ненасыщенные (оборванные) связи, то есть эти дислокации электрически активны в отличие от электрически неактивных винтовых дислокаций. Оборванные связи вносят вклад в энергию дислокаций. Однако основная часть энергии дислокации и в этом случае приходится на энергию упругих искажений. По проведенным оценкам энергия одной разорванной связи составляет 0.7 эВ для германия и 1.2 эВ для кремния [17], то есть в несколько раз меньше, чем упругая энергия, приходящаяся на одну атомную плоскость, пересекаемую дислокацией.

7.Взаимодействие дислокаций с точечными дефектами.

Стремление к уменьшению свободной энергии кристалла вызывает эффективное взаимодействие дислокаций с точечными дефектами и прежде всего с примесными атомами. В результате этого взаимодействия атомы примеси распределяются в решетке неравномерно, как правило, группируясь вблизи дислокаций и образуя так называемые атмосферы Коттрелла.

106

Глава 3. Дефекты в полупроводниковых материалах

Рис. 3.12. Простые дислокации в решетке алмаза: а — винтовая; б — 60-гра- дусная с плоскостью скольжения {111}; в — краевая с оборванными связями и с плоскостью скольжения {100}. a a — линия дислокации; b — вектор Бюргерса.

Таблица 3.1. Возможные типы дислокаций в решетке алмаза [27].

NN

Линия

Символ

Угол между

Плоскость

Число

 

дислокации

линии

линией дислокации

скольжения

оборванных

 

 

дислокации

и вектором Бюргерса

 

связей

 

 

 

 

 

 

 

 

 

Простые

 

 

1

BC

<110>

0

0

2

AB, AC, DB, DC

<110>

60

{111}

1.41

3

AD

<110>

90

{100}

2.83 или 0

 

 

 

Сложные

 

 

4

BC + AC, BC + BA

 

30

 

 

 

BD + BC, DC + BC

<211>

{111}

0.82

5

AC + AB, DC + BC

<211>

90

{111}

1.63

6AD + BD, DA + BA

 

AD + CD, DA + CA

<211>

7313’

{311}

2.45 или 0.82

7

AB + DB, AC + DC

<211>

5444’

{110}

1.63 или 0

8

AC + DB, AB + DC

<100>

90

{110}

2.0 или 0

9a

AD + BC, AD + CB

<100>

45

{100}

2.0 или 0

AC + BD, AB + CD

<100>

45

{100}

2.0 или 0

дефекты Собственные .1.3

107

108

Глава 3. Дефекты в полупроводниковых материалах

Различают три типа взаимодействия дислокаций с точечными дефектами: упругое взаимодействие I рода (размерное); упругое взаимодействие II рода (взаимодействие по модулю упругости); электрическое взаимодействие (кулоновское).

1). Упругое взаимодействие I рода обусловлено полями упругих напряжений вокруг дислокаций и вокруг примесного атома. Знак напряжений вокруг примесного атома зависит от соотношения радиусов атомов основного вещества r0 и примеси r. В случае примеси замещения при ∆r = r r0 > 0 возникают упругие напряжения радиального сжатия, при ∆r < 0 — растяжения. В случае примеси внедрения напряжения всегда сжимающие. Атом, создающий растягивающие напряжения, будет стремиться в сжатую область вокруг дислокации, в то время как атом, создающий сжимающие напряжения, — в растянутую. Взаимодействие этого типа связано с краевыми дислокациями. Упругая энергия EI такого взаимодействия равна работе, совершаемой упругими силами при замене атома основного вещества примесным атомом: EI Gbr03r sin θ/r0R, где G — модуль сдвига, R и sin θ — сферические координаты атома примеси (краевая дислокация находится в начале координат) [17]. Знак отношения ∆r/r0 показывает, куда стремится атом примеси: в растянутую или сжатую область решетки. Характерная энергия этого взаимодействия в полупроводниках составляет ≈0.5 эВ.

Эту же работу надо затратить и для отрыва примесного атома от дислокации. Расчеты показывают, что уже примерно на 3–5 межатомных расстояниях энергия EI kT. Это значит, что дальше этого расстояния от дислокации «облако» атомов примеси (атмосфера Коттрелла) рассасывается тепловым движением. Чем сильнее тепловое движение, тем меньше концентрация атомов примеси в облаке.

2). Упругое взаимодействие II рода обусловлено тем, что примесный атом или вакансия представляют собой малые области с упругими постоянными, иными, чем у матрицы. В этом случае энергия взаимодействия EII между дислокацией и точечным дефектом пропорциональна: EII (∆G)b2/R2, где R — расстояние от точечного дефекта до дислокации [17]. В отличие от первого взаимодействия, второе сказывается лишь на очень малых расстояниях; по порядку величины оно составляет EII ≈ 0.2 эВ. Это взаимодействие вызывает увеличение концентрации вакансий вокруг дислокаций.

3). Электрическое взаимодействие проявляется главным образом в полупроводниковых и ионных кристаллах. Оборванные связи дислокаций обычно действуют как акцепторы. В материале n-типа эти связи захватывают электроны и тем самым создают кулоновское взаимодействие

3.1. Собственные дефекты

109

между дислокацией и положительно заряженными ионами. Величина такого взаимодействия Eэл fe2/a, где f — доля свободных оборванных связей; a — расстояние между оборванными связями вдоль линии дислокации; e — заряд электрона. Максимальное значение Eэл при комнатной температуре ≈0.02 эВ.

Влияние дислокаций на некоторые физические свойства кристалла

Дислокации влияют не только на механические свойства кристаллов (пластичность, прочность),9 для которых наличие дислокаций является определяющим, но и на другие физические свойства кристаллов, например, на электрические.

Дислокации подобно примесным атомам и собственным точечным дефектам могут создавать дополнительные электронные состояния в запрещенной зоне. Например, при наличии краевой дислокации атомы, образующие край атомной полуплоскости (линию дислокации), имеют ненасыщенные связи. Неспаренные электроны атомов с оборванными связями приводят к появлению дополнительных состояний. При этом возможны два случая:

а) захват дополнительного электрона на ненасыщенную связь с возможным образованием разрешенного состояния электрона в запрещенной зоне (дислокация проявляет акцепторые свойства);

б) разрыв ненасыщенной связи и превращение неспаренного электрона в электрон проводимости (дислокация проявляет донорные свойства).

Таким образом, краевые дислокации по электрическим свойствам оказываются сходными с примесными центрами. Однако между ними имеются и существенные различия. Дислокации образованы непрерывной цепочкой атомов основного вещества (среднее расстояние между ними очень мало вдоль дислокации), и поэтому их нельзя считать изолированными дефектами как в случае примесных атомов. Отдельные дислокации можно представить как одномерные кристаллы, которые в запрещенной зоне могут создавать энергетические дислокационные зоны. Следует заметить, что при наличие примесных атмосфер Коттрелла вблизи дислокации могут возникать и дискретные локальные уровни.

Краевую дислокацию в определенном смысле можно рассматривать как заряженную линию. Если, например, проявляются акцепторные свойства дислокации, то в материале n-типа она будет заряжена отрицатель-

9Наличие дислокаций делает кристалл более пластичным. Для упрочения сплавов необходимо уменьшить скорость движения дислокаций путем их торможения, закрепления и т. д. [16].

110

Глава 3. Дефекты в полупроводниковых материалах

но и окружена цилиндрическим слоем индуцированного положительного заряда. Локальные области пространственного заряда, образующиеся вокруг дислокаций, могут приводить к рассеянию носителей заряда, тем самым снижая их подвижности, причем подвижность вдоль и перпендикулярно дислокации оказывается существенно различной.

Электрическая активность дислокаций, как правило, отрицательно сказывается на свойствах полупроводниковых приборов, например, вызывает преждевременный пробой в областях прибора, где дислокация пересекает p n-переход. Дислокации оказывают существенное влияние и на время жизни свободных носителей. В чистых кристаллах нередко именно они ограничивают времена жизни неравновесных носителей заряда.

Кроме того, дислокации определяют концентрацию точечных дефектов в полупроводниковых монокристаллах, так как являются их «источником» и «стоком». Области увеличенных межатомных расстояний являются потенциальными «стоками» междоузельных атомов и «источниками» вакансий в кристалле, а области сжатых межатомных расстояний — наоборот (см. п. 3). Точечные дефекты появляются также и при пересечении отдельно движущихся дислокаций, и при аннигиляции дислокаций, движущихся в параллельных плоскостях скольжения.

Дислокации увеличивают скорость диффузия атомов в кристалле (см. гл. 8), ускоряют эффекты «старения» материала и другие процессы, протекающие с участием диффузии. Сгущение облаков Коттрелла вокруг дислокаций может привести к образованию включений второй фазы. В некоторых случаях дислокации могут играть определяющую роль в процессах роста кристаллов (см. гл. 4).

Методы наблюдения дислокаций

Существует достаточно много экспериментальных методов наблюдения дислокаций. Например, за дислокациями можно наблюдать с помощью электронного микроскопа с высокой разрешающей способностью, с помощью рентгеновской топографии. Однако особенно широкое распространение при изучении дислокаций получили методы избирательного травления и декорирования. Метод избирательного травления основан на том, что вблизи дислокаций энергия связи атомов гораздо слабее, чем в недеформированной решетке. Поэтому места выхода дислокаций на поверхность кристалла травятся специально подобранным травителем быстрее, чем окружающая дислокацию поверхность. В результате такого травления на поверхности кристалла возникают ямки травления. Подсчет

Соседние файлы в предмете Технология материалов и элементов электронной техники