Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Материаловедение

.pdf
Скачиваний:
40
Добавлен:
08.02.2019
Размер:
2.9 Mб
Скачать

2.1. Электронная конфигурация свободных атомов

21

Рис. 2.3. Проникновение 3s-орбитали в неоновый электронный остов ([Ne]) атома Na.

от кулоновского потенциала в атоме водорода из-за влияния электронов друг на друга. Согласно законам общей физики потенциальная энергия электрона U, находящегося на определенной орбитали в поле сфериче- ски-симметричного распределения заряда, пропорциональна Z, где Z — полный заряд, содержащийся внутри сферы, радиус которой равен расстоянию от ядра до электрона. Этот заряд Z состоит из заряда самого ядра минус заряд электронов, находящихся на более близких к ядру орбиталях, чем рассматриваемый электрон. Однако на величину заряда Z, определяющего волновую функцию электрона на рассматриваемой орбитали и его энергию в многоэлектронном атоме, еще оказывает влияние степень проникновения волновой функции этой орбитали в заполненный остов. Поясним этот эффект. В водородоподобном атоме энергия электрона на данной орбитали определяется только главным квантовым числом n и полным зарядом Z: En Ze2/n2, то есть энергии, например, 2s- и 2p-орбиталей должны быть одинаковы. В многоэлектронном атоме ситуация иная. Так, например, у атома Li уровень n = 2 (основное состояние третьего электрона) не является вырожденным, как это было в случае атома водорода. Вместо этого 2s-состояния располагаются несколько ниже 2p-состояний. Основной причиной этой зависимости энергии от l является то обстоятельство, что волновая функция 2s-электрона Li проникает внутрь гелиевого остова больше, чем волновая функция 2p-электрона, и при этом заряд ядра экранируется меньше. Аналогичная ситуация наблюдается и в атоме Na. Энергии 3s-, 3p-, 3d-орбиталей значительно различаются, а порядок их расположения в энергетическом пространстве следующий: 3s, 3p, 3d. Это связано с тем, что волновая функция 3s-электрона Na значительно проникает внутрь неонового остова, при этом заряд ядра вместо того, чтобы экранироваться полностью электронами неонового остова, экранируется частично

22

Глава 2. Основы теории химической связи

(рис. 2.3). В результате получается, что эффективный (результирующий) заряд Z (ранее полный заряд Z) равен ≈ 2 вместо 1. Волновая функция 3p-электрона проникает в неоновый остов меньше, чем 3s-, и эффективный заряд становится 1 < Z < 2; волновая функция 3d-электрона практически совсем не проникает и, следовательно, Z ≈ 1. Для атома калия ситуация следующая: 4s-орбиталь менее экранирована, чем 3d-, а поэтому более стабильна и, следовательно, порядок расположения орбиталей в энергетическом пространстве такой: 3s, 3p, 4s, 3d, 4p.

Таким образом, экранирование заряда ядра в многоэлектронном атоме приводит к расщеплению уровней энергии, то есть к снятию вырождения по l. Следует отметить, что экранирование не единственная причина, приводящая к расщеплению энергетических уровней; этот же эффект вызывают малые магнитные силы, действующие внутри атомов, а также и другие специфические квантовомеханические взаимодействия.

Принцип заполнения орбиталей электронами в многоэлектронных атомах состоит в добавлении электронов к ядру атома, то есть в заполнении соответствующего числа орбиталей в порядке возрастания квантового числа n и в согласии с принципом Паули и правилами Хунда и Клечковского. Согласно принципу Паули на одной орбитали может находиться не более двух электронов с антипараллельными спинами. Отсюда следует, что максимальное число электронов на s, p, d и f-орбиталях, образующих оболочку, равно 2, 6, 10 и 14 (2(2l + 1)) соответственно. Согласно правилу Хунда данная электронная конфигурация обладает наименьшей энергией при максимальном числе неспаренных валентных электронов. Согласно правилу Клечковского орбитали заполняются в порядке возрастания n + l, причем в группе орбиталей с одинаковым значением n + l первыми заполняются орбитали с меньшим значением n: ns < (n − 1)d ≈ (n − 2)f < np.

2.2. Типы химической связи

При сближении изолированных атомов и образовании кристалла их электронные оболочки перекрываются. Взаимодействие электронов, принадлежащих разным атомам, вызывает расщепление атомных дискретных энергетических уровней изолированных атомов. Первыми начинают расщепляться уровни, соответствующие электронам, наиболее удаленным от ядра, то есть находящимся на внешних оболочках атома. При равновесном межатомном расстоянии r0 расщеплены уровни всех орбиталей, участвующих в образовании химической связи. Число расщепленных уровней равно числу атомов в кристалле. Каждый тип атомных ор-

2.2. Типы химической связи

23

Рис. 2.4. Зависимость полной энергии твердого тела E от межатомного расстояния r; r0 — равновесное межатомное расстояние.

биталей группируется в определенное число «молекулярных орбиталей», каждая из которых включает большое число атомных расщепленных орбиталей, очень мало отличающихся друг от друга по энергии. Такие «молекулярные орбитали» образуют энергетические зоны. Таким образом, в результате взаимодействия атомов формируется энергетическая структура твердого тела.

Что же удерживает вместе атомы в кристалле? Химическая связь между ними в основном обеспечивается силами электростатического притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Для того чтобы она образовалась, необходимо выполнение следующих условий.

Положительно заряженные ионные остовы и валентные электроны должны находиться на таком расстоянии друг от друга, чтобы было сведено до минимума электростатическое отталкивание между одноименными зарядами. В то же самое время валентные электроны должны быть настолько близко расположены от положительных ионов, чтобы электростатическое притяжение между разноименными зарядами было максимально. При выполнении этих условий потенциальная энергия системы может немного уменьшиться, а кинетическая может немного возрасти, однако полная энергия должна отвечать минимуму энергии системы (рис. 2.4). В результате ионные остовы будут находиться в твердом теле на равновесном межатомном расстоянии r0, которое определяется равенством сил притяжения и отталкивания между ионными остовами и электронами.

Таким образом, существование стабильной химической связи между атомами в кристалле предполагает, что полная энергия кристалла меньше полной энергии такого числа свободных атомов, из которого состоит кристалл, то есть при образовании химической связи всегда вы-

24

Глава 2. Основы теории химической связи

деляется энергия. Количество энергии, выделившейся при образовании химической связи, называется энергией связи: Eсвяз = Eсвоб.ат Eт.т. Эта величина является важнейшей характеристикой прочности связи и выражается в килоджоулях на 1 моль образующегося вещества. Энергию связи определяют сравнением с состоянием, предшествующим ее образованию. Определить ее непосредственно из эксперимента довольно трудно, обычно энергию связи вычисляют из данных по теплотам реакций с использованием закона Гесса [15]. Иногда энергию связи можно оценить по теплоте сублимации.

В зависимости от особенностей (определяемых индивидуальной электронной структурой взаимодействующих атомов) сил, действующих между атомами или ионами, в элементарных веществах различают три основных типа химической связи: металлическую, ковалентную и молекулярную. Помимо перечисленных в соединениях и твердых растворах возможен ионный тип связи. В веществах, одним из компонентов которых является водород, возможно появление водородного типа связи. Как правило, в реальных материалах одновременно реализуется несколько различных типов связи. Образующаяся в результате связь называется смешанной.

Рассмотрим особенности основных типов химической связи.

2.2.1. Ковалентная связь

Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной. Эта связь обусловлена силами квантовомеханического происхождения — обменным взаимодействием.

Рассмотрим образование гомеополярной ковалентной связи на примере простейшей молекулы водорода H2. В квантовой механике один из методов рассмотрения электронного строения молекул основан на представлении об образовании химической связи в результате движения каждого электрона в поле всех ядер и остальных электронов молекулы. В таком одноэлектронном приближении многоэлектронная волновая функция молекулы представляет собой совокупность одноэлектронных волновых функций (молекулярных орбиталей — МО), каждая из которых описывает один электрон молекулы в определенном состоянии. МО задается определенным набором квантовых чисел и для нее справедлив принцип Паули. При этом сама одноэлектронная МО получается как линейная комбинация одноэлектронных атомных орбиталей (АО). Физическая суть этого метода заключается в следующем (для молекулы водорода). Во время движения электрона вокруг ядерного скелета молекулы H2 в какой-то

2.2. Типы химической связи

25

Рис. 2.5. Диаграмма уровней энергии МО для двухатомных молекул, образованных двумя идентичными (a) и различными (б) атомами.

момент электрон может оказаться вблизи одного ядра (назовем его A) и относительно далеко от другого (назовем его B) и наоборот. Когда он оказывается рядом с данным ядром, он может вести себя более или менее так, как будто он находится на атомной орбитали, принадлежащей этому ядру (ψA или ψB). Если электрон находится в некотором среднем положении относительно скелета из ядер, то его состояние может быть приближенно описано комбинацией обеих функций, то есть ψA ± ψB.

В этом приближении две нормированные волновые функции (МО) молекулы H2 для одного электрона имеют вид

Ψb = NbA + ψB), Ψa = NaA − ψB),

(2.3)

где ψA и ψB — волновые функции электрона атома A и B соответственно, Na,b — постоянные нормировки.

Поскольку атомы A и B идентичны, из уравнения Шредингера сле-

дует, что энергия орбитали Ψb

дается выражением Eb = 2Nb2(Q + β), где

 

 

ψA

B

 

Nb — постоянная нормировки, Q = ψAHˆ

ψAdV = ψBHˆ ψBdV — энер-

гия электрона на орбитали

 

или ψ , то есть энергия атома водорода

в основном состоянии; β =

ψAHˆ ψBdV =

ψBHˆ ψAdV — обменный ин-

теграл. Параметр β

представляет собой энергию взаимодействия между

 

 

 

 

атомами и имеет отрицательное значение. Аналогично для другой орбитали имеем Ea = 2Na2(Q − β), где Na — постоянная нормировки. Энергия Ψb МО оказывается ниже, чем у исходных АО. Ее заполнение приводит к образованию химической связи между атомами. Это основное состояние молекулы, поэтому Ψb называют связывающей МО, а находящиеся на ней электроны связывающими электронами. Энергия МО Ψa выше, чем у исходных АО. Заполнение этой орбитали электронами ведет к разрыхлению химической связи и распаду молекулы на атомы. Такое состояние молекулы можно рассматривать как возбужденное, поэтому МО Ψa называют разрыхляющей, а находящиеся на ней электроны разрыхляющи-

26

Глава 2. Основы теории химической связи

Рис. 2.6. Плотность вероятности нахождения электрона на индивидуальных атомных орбиталях водорода ψ2A и ψ2B (штриховые линии) и на молекулярных орбиталях Ψ2b и Ψ2a (сплошные линии) в молекуле водорода.

ми электронами. Результаты расчетов приведены на диаграмме уровней энергии на рис. 2.5,а.

На рис. 2.6 приведены плотность вероятности нахождения электрона на индивидуальных атомных орбиталях ψA и ψB и на молекулярных орбиталях Ψb и Ψa (с учетом спиновой части волновой функции электрона). Функция Ψb соответствует электронам с антипараллельно направленными спинами, а Ψa — с параллельно направленными спинами. Из рисунка видно, что электрон с волновой функцией Ψb имеет более высокую вероятность нахождения между ядрами, чем электрон с волновой функцией Ψa. Увеличение электронной плотности между двумя положительно заряженными ядрами сопровождается значительным выигрышем энергии по сравнению с невзаимодействующими атомами водорода, что и является причиной образования химической связи в молекуле. Образование химической связи в молекуле водорода иллюстрирует формирование гомеополярной ковалентной связи.

В молекулах, образованных из одинаковых атомов, различают два типа МО, формы которых можно представить исходя из форм исходных атомных орбиталей: это молекулярные орбитали σ- и π типов. σ-МО возникает при перекрытии атомных орбиталей вдоль оси, соединяющей ядра взаимодействующих атомов. Например, в молекуле H2 мы имеем дело с σ-МО (связывающей и разрыхляющей), образующимися при перекрытии s-орбиталей каждого из двух атомов (рис. 2.7,а,б). Если при образовании МО необходимо комбинировать p-орбитали, то при этом могут образовываться σ-МО и π-МО. Например, примем ось, проходящую через два ядра, за ось z. Если при взаимодействии атомов перекрываются pz-орбитали соседних атомов, то могут образовываться связывающая и разрыхляющая σ-МО (рис. 2.7,в,г). При комбинации pz-орбитали одного атома и s-орбитали другого также образуется σ-МО. С образованием σ-МО могут комбинировать s-, p- и d-АО, если они ориентированы вдоль оси связи.

2.2. Типы химической связи

27

Рис. 2.7. Примеры образования молекулярных σ- и π-орбиталей. а, в, д — связывающие орбитали; б, г, е — разрыхляющие орбитали.

28

Глава 2. Основы теории химической связи

Однако px- и py-орбитали уже не могут образовывать σ-МО. При комбинировании они образуют π-орбитали. π-орбиталь — это такой тип МО, центроузловая линия которой совпадает с молекулярной осью. При взаимодействии двух p-орбиталей, расположенных перпендикулярно оси, содержащей ядра атомов, возникают две области перекрытия. Соответственно π-МО не обладает цилиндрической симметрией относительно оси, но имеет равное распределение электронной плотности по обе стороны от плоскости, проходящей через эту ось (рис. 2.7,д,е). π-МО также могут образовываться при перекрытии p- и d-орбиталей или двух d-орбиталей.

Нетрудно догадаться, что гомеополярная ковалентная связь тем прочнее, чем сильнее перекрываются орбитали. При этом связывающие электроны больше концентрируются между ядрами, уменьшается взаимное отталкивание ядер и возрастают силы притяжения между электронами и ядрами. Степень перекрытия атомных орбиталей характеризуется интегралом перекрытия S = ψAψBdV. Он может иметь положительное, отрицательное и нулевое значение. Если S < 0, то ядра отталкиваются, при S = 0 взаимодействия нет, а при S > 0 между ядрами образуется связь (рис. 2.8).

Вернемся к рис. 2.6. На нем изображена типичная диаграмма уровней энергий, показывающая энергии МО, образованные двумя одинаковыми атомами, каждый из которых для образования связи предоставляет одну орбиталь. При этом электронная плотность в молекуле симметрично распределена относительно обоих ядер.

Если двум исходным атомным орбиталям не соответствует одна и та же энергия (такая ситуация возникает, если два атома различны), то уровни, отвечающие Ψa и Ψb, должны быть смещены приблизительно на одинаковое расстояние выше и ниже средней энергии этих двух атомных орбиталей (см. рис. 2.6,б). Результирующее электронное облако в молекуле в этом случае оказывается асимметричным, и атомы нельзя уже считать незаряженными. Таким образом, кроме обменного взаимодействия между атомами будет еще и кулоновское взаимодействие; образующуюся при этом связь называют ковалентной полярной связью. Для ее образования необходимо, чтобы из исходных АО образовывались МО. МО образуются при соблюдении следующих условий: а) довольно близкие значения энергии исходных АО; б) значительное перекрытие АО; в) одинаковая симметрия АО относительно оси молекулы. Увеличение степени нарушения этих условий приводит к увеличению асимметрии электронного облака и постепенному изменению типа связи. Например, в молекуле HCl

2.2. Типы химической связи

29

Рис. 2.8. Различные схемы перекрытия атомных орбиталей.

30

Глава 2. Основы теории химической связи

 

Ψb = ψA + λψB, Ψa = ψB − λψA.

(2.4)

Однако для HCl λ настолько мало, что Ψb ≈ ψA, а Ψa ≈ ψB. Такую полярную ковалентную связь можно рассматривать как переходную между ковалентной и ионной связями. В предельном случае очень сильного различия в энергиях атомных орбиталей, участвующих в образовании связи, эти атомные орбитали уже не будут смешиваться, а образующаяся связь уже не будет ковалентной.

2.2.2. Ионная связь

Ионные кристаллы, то есть те, в которых ионный тип связи является преобладающим, состоят из положительных и отрицательных ионов. Эти ионы образуют кристаллическую решетку в основном за счет электростатического взаимодействия между ионами противоположного знака.

Рассмотрим для простоты простой ионный кристалл.3 Электронные оболочки ионов в таком кристалле похожи на электронные оболочки, характерные для атомов инертных газов, так как атомы, из которых образуется ионный кристалл, достраивают свою внешнюю валентную оболочку до полностью заполненной, присоединяя недостающие электроны (анионы) и отдавая их (катионы). Такой переход электронов оказывается энергетически выгодным (приводит к уменьшению полной энергии системы). Можно ожидать поэтому, что распределение электронной плотности для каждого иона в ионном кристалле будет приближенно обладать сферической симметрией, как у атомов инертных газов, хотя эта симметрия и может несколько нарушаться в области соприкосновения соседних ионов. Этот вывод подтверждается рентгеновскими данными. Так как электрическое поле иона имеет сферическую симметрию, то ионная связь не обладает направленностью. Кроме того, ионная связь не обладает и свойством насыщаемости.

На больших расстояниях взаимодействие между парой противоположно заряженных ионов можно рассматривать как взаимодействие точечных зарядов q с разными знаками. Энергия этого взаимодействия, связанная с силами притяжения, −q2/r, где q — заряд иона, r — расстояние между ионами. Однако в кристаллах надо принимать во внимание взаимодействие между всеми зарядами (как разного знака, так и одного) в структуре. Учет этого, как показывают расчеты [16], приводит к появлению численного множителя α, называемого постоянной

3Простой ионный кристалл — это кристалл, имеющий г.ц.к. решетку типа NaCl.

Соседние файлы в предмете Технология материалов и элементов электронной техники