Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тер вер шпоры.doc
Скачиваний:
9
Добавлен:
27.09.2019
Размер:
1.28 Mб
Скачать

30. Биномиальный закон распределения.

Пусть проводится n независим. испытаний, в кажд. из которых соб. А может появиться, либо не появиться. Вер. появл. соб. А в единичном испытании постоянна и не меняется от исп. к исп.. Рассмотрим в кач-ве ДСВ Х число появлений соб. А в этих исп. Формула, позволяющая найти вер. появления m раз соб. А в n испытаниях – это форм. Бернулли. Опр.: ДСВ Х, кот. может принимать только целые неотриц. знач. с вер. Pn(m)=P(X=m)= pmqn-m, где p+q=1, p>0, q>0, m= называется распределенной по биномиальному закону, а p – параметром биномиальн. распр. Ряд распр. ДСВ Х распределенной по биномиальному закону можно представить в виде:

X

0

1

K

n

p

Ф-ция распр. в этом случае опр-ся формулой F(x)= . Найдем числовые хар-ки этого распр.. M(X) = (рав-во 1) . Запишем рав-во, являющееся биномом Ньютона: (p+q)n= . Продифференцируем последнее рав-во по p: n(p+q)n-1= . Умножим последнее рав-во на p: np(p+q)n-1= . Сравнивая получен. рав-во с рав-вом (1), получаем, что np(p+q)n-1 = M(X). Т.к. p+q=1, то M(X)= np. Для вычисления дисперсии ДСВ, распределенной по биномиальному закону, воспольз. формулой D(X)= M(X2) – (M(X))2. Для СВ распределенной по биномиальн. закону: M(X2) = . Продифференцируем рав-во (p+q)n = дважды по p. Получим n(n–1)(p+q)n—2= . Умножим последнее рав-во на p2 и преобразуем правую часть рав-ва: n(n – 1)(p+q)n —2 p2= — ; n2p2 – np2 = M(X2) — ; n2p2 – np2 = M(X2) – M(X). Для ДСВ распределенной по биномиальн. закону M(X)= np, т.е. n2p2 – np2 = M(X2) – np; M(X2)= n2p2 – np2 + np; D(X)= n2p2 – np2 + np — n2p2 = np(1 – p) = npq. Значит дисперсия ДСВ распределенной по биномиальн. закону вычисляется по формуле: D(X) = npq. .

33. Закон Пуассона

ДСВ Х, кот. может принимать только целые неотриц. знач. с вер. Pm = P(X=m) = , называется распределенной по закону Пуассона с пар-ом распр. λ, где λ=np. В отличие от биномиального распр. здесь СВ может принимать бесконечное мн-во знач., представляющ. собой бесконечн. посл-сть целых чисел(0, 1, 2, 3, … и т.д.). Закон Пуассона описывает число событий m, происходящих за одинаковые промежутки времени. При этом полагается, что события появляются независимо друг от друга с постоянной ср. интенсивностью, кот. хар-ся параметром λ=np. Ряд распр. закона Пуассона имеет вид:

X

0

1

2

M

p

e—λ

λ e—λ

2 e—λ)/2!

m e—λ)/m!

Определение закона Пуассона корректно, т.к. выполнена. Действительно функцию ex можно разложить в ряд, кот. сходится для любого Х. Поэтому eλ = = 1+ λ + λ2/2! + …+ λm/m! +… Тогда = eλ = eλ eλ =1. Найдем м.о. и дисперсию СВ Х, распределенной по закону Пуассона. M(X) = = = =λeλ = λeλ eλ = λ = np. Суммирование начинается с m=1, т.к. 1-ый член суммы соответствующий m=0 равен 0. Дисперсию СВ Х найдем по формуле D(X) = M(X2) – (M(X))2. M(X2) = = eλ = eλ = λ2 eλ + λ eλ = λ2 eλ eλ + λ eλ eλ = λ2 +λ. Тогда D(X) = λ2 +λ — λ2 = λ = np. Т.о. мат. ожидание и дисперсия СВ, распределенной по закону Пуассона, совпадают и равны параметру этого распр. λ.