Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Г.М. Гринфельд ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ уч. пособие.doc
Скачиваний:
730
Добавлен:
24.11.2014
Размер:
5.57 Mб
Скачать

8.5. Методы определения параметров автоколебаний

Если в замкнутой нелинейной системе САУ возникают автоколебания с постоянной амплитудой и частотой, то коэффициенты гармонической линеаризации оказывают­ся постоянными, а вся система стационарной. Незатуха­ющие колебания в замкнутых системах возникают в том случае, когда характеристиче­ское уравнение системы содержит пару мнимых сопря­женных корней.

Характеристический полином замкнутой системы (рис.8.1) при осуществлении гармонической линеаризации входящего в нее нелинейного звена запишем в виде:

, (8.26)

где передаточная функция линейной части си­стемы; передаточная функция нелинейного элемента после его линеаризации.

Если , то выражение (8.26) можно записать в виде:

. (8.27)

Заменяя в выражении (8.27) р на , по­лучим комплексное выражение, в котором необходимо выделить вещественнуюи мнимую части:

[ q(A) +j q1(A)] . (8.28)

При этом условие возникновения периодических колебаний в системе с частотой и амплитудойзапишем:

(8.29)

Если решения системы (8.29) комплексные или отрицательные, режим автоколебаний в системе невозможен. Наличие положительных вещественных решений для исвидетельствует о наличии в системе автоколебаний, которые необходимо проверить на устойчивость.

В качестве примера найдем условия возникновения автоколеба­ний в САУ, если передаточная функция ее линейной части равна:

(8.30)

и нелинейным элементом типа «петля гистерезиса».

Передаточная функция гармонически линеаризованного нелинейного элемента (см. табл. 8.1) имеет вид:

. (8.31)

Подставляя выражения (8.30) и (8.31) в выражение (8.26) и заменяя р на , найдем выражение для:

.

Отсюда в соответствии с выражением (8.29) получаем следующие условия возникновения автоколебаний в системе:

Решение системы уравнений (8.29) обычно затруднительно, так как ко­эффициенты гармонической линеаризации имеют слож­ную зависимость от амплитуды входного сигнала. Кроме того, помимо определения амплитуды и частоты, необходимо оценить устойчивость автоколебаний в системе.

Условия возникновения автоколебаний в нелинейной системе и параметры предельных циклов можно исследо­вать, используя частотные критерии устойчивости, например, критерий устойчи­вости Найквиста. Согласно этому критерию при наличии автоколебаний амплитудно-фазовая характеристика разомкнутой гармонически линеаризованной системы, равная

=,

проходит через точку (-1, j0). Следовательно, для исправедливо равенство:

или

. (8.32)

Решение уравнения (8.32) относительно частоты и амплитуды автоколебаний можно получить графически. Для этого на комплексной плоскости необходимо, изменяя частоту от 0 до, построить годограф АФХ линейной части системыи, изменяя амплитудуА от 0 до , построить годограф обратной ха­рактеристики нелинейной части, взятый с знаком «минус». Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует (рис. 8.18, б).

При пересечении годографов (рис. 8.18, а) в системе возникают автоколебания, частота и амплитуда которых опреде­ляются значениямиив точке пересечения.

Если и -пересекаются в нескольких точках (рис. 8.18, а), то это свидетельствует о наличии в системе нескольких предельных циклов. При этом колебания в системе могут быть устойчивы­ми и неустойчивыми.

Устойчивость автоколебательного режима оценивается следующим образом. Режим автоколебаний устойчив, если точка на годографе нелинейной части , соответствующая амплитуде большей по сравнению со значением в точке пересечения годографов, не охватывается годографом частотной характеристики линейной части системы. В противном случае автоколебательный режим неустойчив.

На рис. 8.18, а годографы пересекаются в точках 1 и 2. Точка 1 определяет неустойчивый режим автоколебаний, так как точка годографа , соответствующая увеличенной амплитуде, охватывается годографом частотной характеристики линейной части системы. Точке 2 соответствует устойчивый режим автоколебаний, амплитуда которых определяется по годографуа частота – по годографу.

В качестве примера оценим устойчивость автоколебаний в двух нелинейных системах. Будем полагать, что передаточные функции линейных частей этих систем совпадают и равны:

,

но входящие в них их нелинейные элементы различны. Пусть в первую систему включен нелинейный элемент «идеальное реле», описываемый системой (8.14), а во вторую – нелинейный элемент со статической характеристикой «кубическая парабола». Воспользовавшись данными таблицы 8.1, получим:

и .

На рис. 8.19 изображены годографыэтих систем совместно с годографом АФХ линейной части системы. На основании изложенного можно утверждать, что в первой системе возникают устойчивые автоколебания с частотойи амплитудой, а во второй системе автоколебания неустойчивые.