Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тса заочники / ЛекцииТСАDoc.doc
Скачиваний:
1176
Добавлен:
28.03.2015
Размер:
5.56 Mб
Скачать

1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от температуры. Терморезисторы называют также термометрами сопротивления или термосопротивлениями. Они применяются для измерения температуры в широком диапазоне от -270 до 1600 °С.

Если терморезистор нагревать проходящим через него электрическим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность теплообмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой находится терморезистор, от скорости перемещения терморезистора относительно газовой или жидкой среды, то терморезисторы используются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисторы. Металлические терморезисторы изготовляют из чистых металлов: меди, платины, никеля, железа, реже из молибдена и вольфрама. Для большинства чистых металлов температурный коэффициент электрического сопротивления составляет примерно (4—6,5) 10-3 1/°С, т. е. при увеличении температуры на 1 °С сопротивление металлического терморезистора увеличивается на 0,4—0,65 %. Наибольшее распространение получили медные и платиновые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффициент сопротивления, чем медные и платиновые, однако применяются они реже. Дело в том, что железо и никель сильно окисляются и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает температурный коэффициент сопротивления. Сплавы металлов и окисляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры приходится применять такие жаропрочные металлы, как вольфрам и молибден, хотя терморезисторы из них имеют характеристики, несколько отличающиеся от образца к образцу.

Широкое применение в автоматике получили полупроводниковые терморезисторы, которые для краткости называют термисторами. Материалом для их изготовления служат смеси оксидов марганца, никеля и кобальта; германий и кремний с различными примесями и др.

По сравнению с металлическими терморезисторами полупроводниковые имеют меньшие размеры в большие значения номинальных сопротивлений. Термисторы имеют на порядок больший температурный коэффициент сопротивления (до -6 10-2 1/ºС). Но этот коэффициент — отрицательный, т. е. при увеличении температуры сопротивление термистора уменьшается. Существенный недостаток полупроводниковых терморезисторов по сравнению с металлическими — непостоянство температурного коэффициента сопротивления. С ростом температуры он сильно падает, т. е. термистор имеет нелинейную характеристику. При массовом производстве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

(1)

где С — постоянный коэффициент, зависящий от материала и конструктивных размеров проводника; α температурный коэффициент сопротивления; е — основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в градусах Цельсия соотношением Т К= 273 + Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при начальной температуре Т0 и имел сопротивление . При нагреве до температурыT его сопротивление . Возьмем отношение RT и R0:

(2)

Известно, что функцию вида ex можно разложить в степенной ряд:

Для нашего случая . Так как величина α для меди сравнительно мала и в диапазоне температур до +150 °С может быть принята постоянной α = 4,3 10-3 1/ºС, то и произведение в этом диапазоне температур меньше единицы. Поэтому не будет большой ошибкой пренебречь при разложении членами ряда второй степени и выше:

(3)

Выразим сопротивление при температуре T через начальное сопротивление при T0

(4)

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные) с соответствующей градуировкой: гр. 23 имеет сопротивление 53,00 Ом при 0 ºC; гр. 24 имеет сопротивление 100,00 Ом при 0 ºC. Медные терморезисторы выполняются из проволоки диаметром не менее 0,1 мм, покрытой для изоляции эмалью.

Для платиновых терморезисторов, которые применяются в более широком диапазоне температур, чем медные, следует учитывать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции ex.

В диапазоне температур от -50 до 700 °С достаточно точной является формула

(5)

где для платины α = 3,94 10-3 1/ºС, β = 5,8 10-7 (1/ºС)2.

Платиновые терморезисторы выпускаются серийно и обозначаются ТСП (термосопротивления платиновые) с соответствующей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0 °С, гр. 21 — 46,00 Ом; гр. 22 — 100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.

В табл. 1 приведены зависимости сопротивления металлических терморезисторов от температуры; они называются стандартными градуировочными таблицами.

Таблица 1. Зависимость сопротивления терморезисторов от температуры

Температура, °С

Сопротивление, Ом

Платиновые термометры сопротивления

Медные термометры сопротивления

гр. 20

гр. 21

гр. 22

гр. 23

гр. 24

-200

1,73

7,95

17,28

-

-

-150

3,88

17,85

38,80

-

-

-100

5,97

27,44

59,65

-

-

-50

8,00

36,80

80,00

41,71

78,70

-30

8,80

40,50

88,04

46,23

87,22

-10

9,60

44,17

96,03

50,74

95,74

0

10,00

46,00

100,00

53,00

100,00

20

10,79

46,94

107,91

57,52

108,52

40

11,58

53,26

115,78

62,03

117,04

60

12,36

56,86

123,60

66,55

125,56

80

13,14

60,43

131,37

71,06

1 34,08

100

13,91

63,99

139,10

75,58

142,60

120

14,68

67,52

146,78

80,09

151,12

140

15,44

71,03

154,41

84,61

159,64

160

16,20

74,52

162,00

89,13

168,16

180

16,95

77,99

169,54

93,64

176,68

300

21,38

98,34

213,79

-

-

400

24,94

114,72

249,38

-

-

500

28,38

130,55

283,80

-

-

600

21,70

145,85

317,06

-

-

650

33,33

153,30

333,25

-

-

На рис. 1 показано устройство платинового термометра сопротивления. Сам терморезистор выполнен из платиновой проволоки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Серебряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный чехол 7.

Рис. 1. Платиновый термометр сопротивления

Соседние файлы в папке Тса заочники